欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

$\mathbb{H}{{\mathbf{P}}^{n}}$中的常曲率共形极小2维球面

吴英毅, 于文浩   

  1. 中国科学院大学数学科学学院, 北京100049
  • 收稿日期:2024-03-26 修回日期:2024-05-27 发布日期:2024-06-11

Conformal minimal 2-spheres with constant curvature in $\mathbb{H}{{\mathbf{P}}^{n}}$

WU Yingyi, YU Wenhao   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2024-03-26 Revised:2024-05-27 Published:2024-06-11
  • Contact: E-mail: wuyy@ucas.ac.cn

摘要: 我们通过扭映射$\pi :\mathbb{C}{{\text{P}}^{2n+1}}\to \mathbb{H}{{\text{P}}^{n}}$构造了$\mathbb{H}{{\mathbf{P}}^{n}}$中的线性满常曲率共形极小2维球面。亦即我们构造了在$\mathbb{C}{{\text{P}}^{2n+1}}$ 或$\mathbb{C}{{\text{P}}^{2n}}$中的水平线性满常曲率共形极小2维球面(对于后一种情况,我们考虑其在$\mathbb{C}{{\text{P}}^{2n+1}}$的自然嵌入)。进而,我们证明了这种方法构造的球面都是非齐性的。

关键词: 四元数射影空间, 调和序列, 齐性球面, 常曲率极小2维球面

Abstract: We construct new conformal minimal 2-spheres of constant curvature linearly full in the quaternion projective space $\mathbb{H}{{\mathbf{P}}^{n}}$ by the twistor map $\pi :\mathbb{C}{{\text{P}}^{2n+1}}\to \mathbb{H}{{\text{P}}^{n}}$ in a systematic way. That is, we construct 2-spheres linearly full in $\mathbb{C}{{\text{P}}^{2n+1}}$ or $\mathbb{C}{{\text{P}}^{2n}}$ satisfying horizontal condition explicitly. (In the latter case, we consider the natural embedding of the map). We prove all 2-spheres we constructed are non-homogeneous.

Key words: quaternionic projective space, harmonic sequence, homogeneous 2-sphere, constantly curved minimal 2-sphere

中图分类号: