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Abstract　 In
 

this
 

paper,
 

we
 

consider
 

the
 

structure-preserving
 

numerical
 

simulation
 

of
 

a
 

class
 

of
 

stochastic
 

Poisson
 

systems,
 

i. e.
 

the
 

stochastic
 

Lotka-Volterra
 

systems.
 

We
 

propose
 

a
 

stochastic
 

Poisson
 

integrator
 

for
 

the
 

systems
 

which
 

can
 

preserve
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions
 

of
 

the
 

systems,
 

and
 

prove
 

that
 

the
 

numerical
 

integrator
 

has
 

root
 

mean-square
 

convergence
 

order
 

1.
 

Numerical
 

experiments
 

are
 

performed
 

to
 

verify
 

the
 

theoretical
 

results.
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一类随机泊松系统的保结构数值方法

刘倩倩,王丽瑾
 

(中国科学院大学数学科学学院,北京
 

100049)

摘　 要　 考虑一类随机泊松系统,称为随机 Lotka-Volterra 系统的保结构数值模拟。 为该类系

统提出一种随机泊松积分子,并证明了该积分子具有一阶均方收敛阶。 数值实验对理论结果

进行了验证。
 

关键词 　 随机泊松系统;Lotka-Volterra 系统; Stratonovich
 

型随机微分方程;Poisson 结构;
Casimir 函数

　 　 Stochastic
 

Poisson
 

systems
 

are
 

defined
 

as
 

the
 

form[1]

dy( t) = B(y( t))( ΔH0(y( t))dt +

∑
s

r = 1

ΔHr(y( t)) 􀳱 dWr( t)),

y( t0) = y0,

ì

î

í

ï
ïï

ï
ïï

(1)

where
 

y( t)= (y1,…,yn) T,
 

B(y)= (bij(y)) n×n
 is

 

a
 

skew-symmetric
 

matrix,
 

and
 

satisfies
 

the
 

condition

∑ n

v = 1 (
∂bij(y)

∂yv
bvk(y) +

∂b jk y( )

∂yv
bvi(y) +

∂bki y( )

∂yv
bvj(y) ) = 0, (2)
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for
 

all
 

i,j,k ∈ {1,…,n} . Hr(y),r = 0,…,s
 

are
 

smooth
 

scalar
 

functions.
 

W( t) = (W1( t),…,
Ws( t))

 

is
 

an
 

s-dimensional
 

standard
 

Wiener
 

process,
 

and
 

􀳱
 

stands
 

for
 

the
 

Stratonovich
 

product.
 

We
 

assume
 

that
 

B(y)
 

is
 

of
 

constant
 

rank
 

2m = n - l,
0 ≤ l < n .

A
 

skew-symmetric
 

matrix
 

B(y)
 

with
 

property
 

(2)
 

can
 

define
 

the
 

Poisson
 

bracket
 

{F,G}(y)
 

of
 

two
 

smooth
 

functions
 

F(y)
 

and
 

G(y)
 

as
 

Refs.
 

[1-
2]

{F,G}(y) ∑ n

i,j = 1

∂F(y)
∂yi

bij(y) ∂G(y)
∂y j

 ,

or
 

equivalently
 

in
 

the
 

form
{F,G}(y) ΔF(y) TB(y) ΔG(y) .

　 　 It
 

is
 

known
 

that
 

almost
 

surely
 

the
 

phase
 

flow
 

φ t,ω:y0 → y( t)
 

of
 

the
 

stochastic
 

Poisson
 

system
 

(1)
 

preserves
 

the
 

Poisson
 

structure[1]
 

,
 

∂y( t)
∂y0

B(y0) ∂y( t)
∂y0

T

= B(y( t)),∀t ≥ t0 .

(3)
A

 

function
 

C(y)
 

is
 

called
 

Casimir
 

function
 

of
 

the
 

system
 

(1)
 

if
 

ΔC(y) TB(y) = 0,　 for
 

all
 

y.
It

 

is
 

not
 

difficult
 

to
 

prove
 

that
 

each
 

Casimir
 

function
 

C(y)
 

is
 

an
 

invariant
 

for
 

the
 

system
 

(1) [1]
 

.

If
 

n = 2m
 

and
 

B(y) =
0 - Im
Im 0( ) ,

 

where
 

Im

 denotes
 

an
 

m-dimensional
 

identity
 

matrix,
 

the
 

stochastic
 

Poisson
 

system
 

( 1 )
 

degenerates
 

to
 

the
 

stochastic
 

canonical
 

Hamiltonian
 

system.
 

The
 

phase
 

flow
 

of
 

a
 

stochastic
 

Hamilton
 

system
 

preserves
 

the
 

symplectic
 

structure[3-4]
 

.
 

The
 

Poisson
 

structure
 

of
 

stochastic
 

Poisson
 

systems
 

is
 

an
 

extension
 

of
 

the
 

symplectic
 

structure.
 

For
 

stochastic
 

Poisson
 

systems,
 

there
 

arised
 

some
 

numerical
 

results
 

in
 

recent
 

years.
 

For
 

a
 

special
 

class
 

of
 

stochastic
 

Poisson
 

systems,
 

numerical
 

methods
 

are
 

proposed
 

in
 

Ref.
 

[ 5]
 

and
 

Ref.
 

[ 6]
 

respectively,
 

where
 

the
 

method
 

proposed
 

in
 

Ref.
 

[5]
 

can
 

exactly
 

preserve
 

quadratic
 

Casimir
 

functions
 

and
 

the
 

energy,
 

while
 

the
 

method
 

given
 

in
 

Ref.
 

[6]
 

is
 

energy-preserving
 

with
 

the
 

ability
 

of
 

arriving
 

any
 

prescribed
 

order.
 

In
 

Ref.
 

[ 7],
 

for
 

stochastic
 

Poisson
 

systems
 

of
 

even
 

dimensions,
 

the
 

structure-preserving
 

Runge-Kutta
 

and
 

partitioned
 

Runge-Kutta
 

methods
 

are
 

proposed.
 

The
 

Darboux-Lie
 

theorem
 

and
 

symplectic
 

methods
 

are
 

used
 

to
 

obtain
 

structure-preserving
 

numerical
 

schemes
 

for
 

stochastic
 

Poisson
 

systems
 

in
 

Ref.
 

[1].
In

 

this
 

paper,
 

we
 

consider
 

the
 

following
 

stochastic
 

Lotka-Volterra
 

( L-V )
 

system
 

with
 

Stratonovich
 

white
 

noise[5,8]
 

dy( t) = B(y( t)) ΔH(y( t))(dt + c 􀳱 dW( t)),
y( t0) = y0,{

(4)
with

 

H(y) = ∑ n

i = 1
βiyi - pi lnyi,

B(y) = diag(y1,…,yn)Bdiag(y1,…,yn),
(5)

where
 

β i ≠ 0( i = 1,…,n),
 

B
 

is
 

a
 

skew-symmetric
 

constant
 

matrix
 

and
 

c > 0
 

measures
 

the
 

size
 

of
 

the
 

perturbation.
 

Moreover
 

we
 

assume
 

the
 

Assumption
 

2. 1
 

holds.
 

It
 

was
 

proved
 

in
 

Ref.
 

[8]
 

that,
 

under
 

Assumption
 

2. 1,
 

for
 

any
 

given
 

y0 > 0,
 

the
 

system
 

(4)-(5)
 

has
 

a
 

unique
 

solution
 

which
 

is
 

positive
 

for
 

all
 

t ≥ t0
 almost

 

surely.
 

Hereby
 

and
 

in
 

the
 

sequel
 

we
 

write
 

a
 

vector
 

a > 0
 

to
 

mean
 

that
 

each
 

element
 

of
 

a
 

is
 

positive.
 

Meanwhile,
 

the
 

system
 

( 4 )-( 5 )
 

is
 

a
 

stochastic
 

Poisson
 

system,
 

with
 

Casimir
 

functions
 

C(y) = α1 lny1 + … + αn lnyn,α = (α1,…,αn) T ∈
Ker

 

B
 

and
 

Hamiltonian
 

H(y)
 

which
 

is
 

smooth
 

for
 

y > 0.
In

 

this
 

paper,
 

we
 

transform
 

the
 

stochastic
 

L-V
 

system
 

to
 

a
 

stochastic
 

Hamiltonian
 

system
 

by
 

coordinate
 

transformation.
 

Then
 

we
 

apply
 

the
 

midpoint
 

method,
 

which
 

is
 

a
 

symplectic
 

scheme,
 

to
 

the
 

stochastic
 

Hamiltonian
 

system
 

and
 

by
 

using
 

the
 

inverse
 

transformation
 

to
 

obtain
 

the
 

numerical
 

scheme
 

for
 

the
 

stochastic
 

L-V
 

system.
 

This
 

method
 

is
 

shown
 

to
 

preserve
 

the
 

Poisson
 

structure
 

and
 

Casimir
 

functions
 

of
 

the
 

stochastic
 

L-V
 

system.
 

We
 

further
 

prove
 

that
 

the
 

method
 

is
 

of
 

root
 

mean-square
 

convergence
 

order
 

1.

1　 A
 

Poisson
 

integrator

1. 1　 The
 

Darboux-Lie
 

theorem
　 　 The

 

Darboux-Lie
 

theorem
 

is
 

as
 

follows.
 

Theorem
 

1. 1　 ( see
 

Ref.
 

[2])
 

Suppose
 

that
 

992
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the
 

matrix
 

B(y)
 

defines
 

a
 

Poisson
 

bracket
 

and
 

is
 

of
 

constant
 

rank
 

n - l = 2m
 

in
 

a
 

neighborhood
 

of
 

y0 ∈ RR n .
 

Then
 

there
 

exist
 

functions
 

P1(y), …,
Pm(y),Q1(y), …,Qm(y),

 

and
 

C1(y), …,
 

C l(y)
 

satisfying
 

{P i,P j} = 0, {P i,Q j} = - δij, {P i,Cv} = 0,
{Qi,P j} = δij, {Qi,Q j} = 0, {Qi,Cv} = 0,
{Ck,P j} = 0, {Ck,Q j} = 0, {Ck,Cv} = 0,

(6)
for

 

i,j ∈ {1, …,m},
 

v ∈ {1, …,l}
 

on
 

a
 

neighborhood
 

of
 

y0 .
 

The
 

gradients
 

of
 

P i,Q j,Cv,
 

( i,j
∈ {1,…,m},

 

v ∈ {1,…,l})
 

are
 

linearly
 

independent,
 

so
 

that
 

the
 

RR n→ RR n
 

mapping
 

θ( y):
y→(P1(y),…,Pm(y),Q1(y),…,Qm(y),C1(y),
…,C l(y))

 

constitutes
 

a
 

local
 

change
 

of
 

coordinates
 

to
 

canonical
 

form.
If

 

we
 

denote
 

y- = (Z(y) T,C(y) T) T ,
 

where
 

Z(y) = (P(y) T,Q(y) T) T,
P(y) = (P1 y( ) ,…,Pm y( ) ) T,
Q(y) = (Q1(y),…,Qm(y)) T,
C(y) = (C1(y),…,C l(y)) T,

by
 

the
 

Darboux-Lie
 

theorem,
 

the
 

system
 

(4)
 

can
 

be
 

transformed
 

to
 [1]

dZ = J -1 Δ

ZK(Z,C)(dt + c 􀳱 dW( t)),
dC = 0,{ (7)

which
 

is
 

a
 

stochastic
 

Hamiltonian
 

system
 

( SHS )
 

with
 

constant
 

parameter
 

vector
 

C ,
 

and
 

K(Z,C) =

K( y-) = H(y),J -1 =
0 - Im
Im 0( ) . K  

is
 

smooth
 

owing
 

to
 

the
 

smoothness
 

of
 

H .
According

 

to
 

the
 

results
 

in
 

Ref.
 

[1],
 

applying
 

a
 

symplectic
 

scheme
 

to
 

SHS
 

( 7 )
 

and
 

then
 

transforming
 

the
 

scheme
 

back
 

to
 

system
 

(4)
 

by
 

the
 

inverse
 

transformation
 

y = θ -1( y-) ,
 

one
 

gets
 

a
 

stochastic
 

Poisson
 

integrator
 

for
 

the
 

stochastic
 

Poisson
 

system
 

( 4),
 

which
 

can
 

preserve
 

both
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions
 

of
 

system
 

(4)
 

almost
 

surely.
1. 2　 The

 

numerical
 

scheme
　 　 As

 

mentioned
 

above,
 

stochastic
 

Poisson
 

integrators
 

can
 

be
 

obtained
 

by
 

using
 

symplectic
 

methods
 

to
 

the
 

SHS
 

arising
 

from
 

the
 

coordinate
 

transformation.
 

It
 

is
 

well-known
 

that
 

the
 

midpoint
 

method
 

is
 

a
 

symplectic
 

method
 

for
 

SHS[9] .
 

Therefore
 

we
 

propose
 

a
 

numerical
 

scheme
 

for
 

system
 

( 4 )
 

derived
 

from
 

the
 

transformation
 

of
 

the
 

midpoint
 

scheme,
 

which
 

we
 

call
 

the
 

transformed
 

midpoint
 

(TM)
 

method
 

in
 

the
 

sequel.
The

 

TM
 

method:
( a )

 

By
 

the
 

Darboux-Lie
 

theorem,
 

we
 

find
 

a
 

coordinate
 

transformation
 

θ(y):y → y- = (Z(y) T,
CT) T ,

 

which
 

transforms
 

system
 

( 4 )
 

with
 

initial
 

value
 

y0
 to

 

SHS
 

( 7 )
 

with
 

initial
 

value
 

Z0 =
(P(y0) T,Q(y0) T) T .
(b)

 

Apply
 

the
 

midpoint
 

method
 

to
 

SHS
 

(5)
 

Z j +1 = Z j + J -1 Δ

zK
Z j +1 + Z j

2
,C( ) (h + cΔŴ j),

(8)

where
 

h
 

is
 

the
 

time
 

step
 

and
 

ΔŴ j
 ( j = 0,1,… )

 

are
 

truncated
 

Wiener
 

increments
 

(explained
 

below).
 

( c )
 

Solve
 

equation
 

( 6 )
 

for
 

Z j +1,
 

then
 

use
 

the
 

inverse
 

transformation
 

y j+1 = θ -1 y- j +1( )
 

with
 

y- j+1 =
(ZT

j +1,CT) T
 

to
 

get
 

the
 

numerical
 

solution
 

y j +1( j = 0,
1,…)

 

for
 

system
 

(4).
 

In
 

equation
 

(8),
 

ΔŴ j: = h ζ j  is
 

a
 

truncation
 

of
 

ΔW j = h ξ j ,
 

where
 

ξ j ~ (0,1)
 

and
 

ζ j =
ξ j,if

 

| ξ j | ≤ Ah,
Ah,if

 

ξ j > Ah,
- Ah,if

 

ξ j < - Ah,

ì

î

í

ï
ï

ïï

where
 

Ah: = 2k | ln(h) |
 

( for
 

an
 

integer
 

k ≥
1)

 [9] .
 

Moreover,
 

one
 

has
 

the
 

following
 

estimates[9-10] :
 

EE [ξ j - ζ j] 2 ≤ h2, (9)

0 ≤ EE [ξ2
j - ζ2

j ] = (1 + 2 2k | ln(h) | )hk,
EE [ξ2

j - ζ2
j ] 2 ≤ 27h.

As
 

discussed
 

in
 

Ref.
 

[ 9],
 

such
 

a
 

truncation
 

is
 

a
 

remedy
 

to
 

fix
 

the
 

issue
 

in
 

implementing
 

an
 

implicit
 

scheme
 

caused
 

by
 

the
 

unboundedness
 

of
 

ΔW j
 ( j = 0,

1,…) .
 

By
 

choosing
 

sufficiently
 

large
 

parameter
 

k ,
 

the
 

truncation
 

error
 

can
 

be
 

merged
 

into
 

the
 

error
 

of
 

the
 

numerical
 

scheme,
 

and
 

for
 

a
 

method
 

of
 

root
 

mean-square
 

order
 

l ,
 

it
 

is
 

sufficient
 

to
 

choose
 

k ≥
2l.

 

Here
 

in
 

this
 

paper
 

we
 

take
 

k = 4
 

in
 

Ah
 which

 

is
 

sufficient
 

for
 

our
 

discussion.
Remark

 

1. 1　 With
 

the
 

truncation
 

of
 

ΔW j ,
 

the
 

003
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fixed
 

point
 

iteration
 

by
 

solving
 

equation
 

(8)
 

for
 

Z j +1
 

can
 

converge
 

for
 

sufficiently
 

small
 

h,
 

similar
 

to
 

the
 

discussion
 

in
 

Refs. [9,
 

11].
Remark

 

1. 2　 The
 

Darboux-Lie
 

transformation
 

θ(y)
 

varies
 

for
 

different
 

concrete
 

problems,
 

usually
 

found
 

by
 

solving
 

the
 

equations
 

in
 

(6).
 

Then
 

by
 

the
 

discussion
 

in
 

section
 

1. 1
 

we
 

have
 

the
 

following
 

conclusion.
 

Theorem
 

1. 2 　 The
 

TM
 

method
 

preserves
 

the
 

Poisson
 

structure
 

and
 

Casimir
 

functions
 

of
 

the
 

Stochastic
 

L-V
 

System
 

(4)-(5).

2　 Convergence
 

order
　 　 In

 

this
 

section
 

we
 

will
 

prove
 

the
 

root
 

mean-
square

 

convergence
 

order
 

of
 

the
 

TM
 

method.
 

Assumption
 

2. 1 　 ( see
 

Ref. [ 8 ])
 

Assume
 

that
 

for
 

the
 

parameters
 

β = (β1,…,βn) T,p = (p1,
…,pn) T

 

of
 

the
 

system
 

(4)-(5),
 

there
 

exists
 

a
 

real
 

number
 

s0 ∈ RR
 

and
 

a
 

vector
 

α ∈ KerB
 

such
 

that
s0β > 0,
- s0p + α < 0.{ (10)

　 　 Lemma
 

2. 1 　 ( see
 

Ref. [ 8 ])
 

Under
 

Assumption
 

2. 1,
 

for
 

any
 

given
 

initial
 

value
 

y0 > 0,
 

the
 

exact
 

solution
 

of
 

system
 

( 4 )-( 5 )
 

is
 

almost
 

surely
 

bounded.
Based

 

on
 

Lemma
 

2. 1,
 

we
 

can
 

prove
 

the
 

boundedness
 

of
 

the
 

numerical
 

solution
 

of
 

the
 

TM
 

method.
 

We
 

assume
 

the
 

numerical
 

approximation
 

is
 

performed
 

on
 

the
 

time
 

interval
 

t ∈ [ t0,T] ,
 

and
 

tN = T .
 

Theorem
 

2. 1 　 Under
 

Assumption
 

2. 1,
 

given
 

y0 > 0,
 

the
 

numerical
 

solution
 

{yj}( j = 1,…,N)
 

arising
 

from
 

the
 

TM
 

method
 

is
 

bounded
 

almost
 

surely.
Proof 　 Given

 

y0 > 0,
 

by
 

Lemma
 

2. 1,
 

the
 

exact
 

solution
 

y( t)
 

of
 

system
 

( 4)-( 5)
 

is
 

almost
 

surely
 

bounded.
 

Since
 

θ(y)
 

is
 

continuous
 

by
 

the
 

Darboux-Lie
 

theorem
 

(θ′(y)
 

exists
 

and
 

invertible),
 

the
 

solution
 

of
 

system
 

(7)
 

is
 

almost
 

surely
 

bounded.
 

This
 

means
 

there
 

are
 

constants
 

L1,L2
 such

 

that
 

(P(y) T,Q(y) T) T ∈ [L1,L2] 2m
 

almost
 

surely.
 

For
 

a
 

vector
 

a ∈ RR 2m,
 

we
 

say
 

a ∈ [L1,L2] 2m
 

to
 

mean
 

that
 

each
 

element
 

of
 

a
 

is
 

in
 

[L1,L2] .

For
 

Z0 ∈ [L1,L2] 2m ,
 

we
 

define
 

ϕ(Z) = Z0 + J -1 Δ

zK
Z + Z0

2
,C( ) h + cΔŴ0( ) .

(11)
Then

 

the
 

scheme
 

(6)
 

can
 

be
 

written
 

as
Z1 = ϕ(Z1), (12)

when
 

j = 0.
 

We
 

can
 

use
 

the
 

fixed-point
 

iteration
 

method
 

to
 

solve
 

( 12).
 

Select
 

the
 

initial
 

value
 

z
 

of
 

iteration
 

that
 

satisfies
 

0 < ‖z - Z0‖ < 1,
 

thus
 

z∈
[L1 - 1,L2 + 1] 2m \Z0 .

 

We
 

have

‖ϕ(z) -Z0‖=‖J-1 ΔK
z + Z0

2
,C( ) (h + cζ0 h)‖

=‖J-1 ΔK
z + Z0

2
,C( ) ‖(h +c | ζ0 | h)

Since
 z + Z0

2
∈ [L1 - 1,L2 + 1] 2m ,

 

and
 

the
 

function
 

J -1 ΔK(z,C)
 

is
 

continuous,
 

we
 

have

‖ϕ(z) - Z0‖ ≤ K3(h + c | ζ0 | h ),

for
 

certain
 

K3 > 0.
 

Since
 

| ζ 0 | ≤ Ah = 2k | lnh | ,
 

and
 

h | lnh | → 0
 

as
 

h→ 0,
 

we
 

can
 

choose
 

sufficiently
 

small
 

h1
 such

 

that
 

for
 

h < h1,
 

K3(h + c | ζ 0 | h ) <
1,

 

which
 

implies
 

ϕ(z) ∈ [L1 - 1,L2 + 1] 2m .
On

 

the
 

other
 

hand,
 

denote
f(z): = J -1 Δ

zK(z,C),g(z): = cJ -1 Δ

zK(z,C),
then

 

for
 

any
 

z1,z2 ∈ [L1 - 1,L2 + 1] 2m ,
 

due
 

to
 

smoothness
 

of
 

K
 

and
 zi + Z0

2
∈ [L1 - 1,L2 + 1] 2m

 

( i = 1,2) ,
 

it
 

is
 

not
 

difficult
 

to
 

see
 

from
 

(11)
 

that
 

there
 

exists
 

constant
 

K4 > 0
 

such
 

that
 

‖f(z1) - f(z2)‖ ≤ K4‖z1 - z2‖.
Choose

 

h2 > 0
 

such
 

that
 

for
 

h < h2,
 

K4(h + c | ζ0 |

h ) < 1,
 

which
 

implies
 

‖ϕ(z1) - ϕ(z2)‖ <
‖z1 - z2‖.

 

Then
 

for
 

h < h0: = min{h1,h2},
 

ϕ:
[L1 - 1,L2 + 1] 2m → [L1 - 1,L2 + 1] 2m

 

is
 

a
 

contraction
 

mapping.
 

According
 

to
 

the
 

contraction
 

mapping
 

principle,
 

the
 

sequence
 

of
 

iterations
 

converges
 

and
 

Z1 ∈ [L1 - 1,L2 + 1] 2m .
Expanding

 

the
 

midpoint
 

scheme,
 

by
 

the
 

smoothness
 

of
 

K
 

and
 

the
 

boundedness
 

of
 

Z0
 and

 

Z1,
 

we
 

get

Z1 = Z0 + hf
Z1 + Z0

2( ) + g
Z1 + Z0

2( ) ζ 0 h

103



中国科学院大学学报(中英文) 第 41 卷

= Z0 + f(Z0)+
1
2

􀆟f
􀆟z

(Z0)(Z1 - Z0) + O(h)( ) h +

g(Z0) + 1
2

􀆟g
􀆟z( ) (Z0)(Z1 - Z0) +

1
8

􀆟2g
􀆟z2 (Z0)(Z1 - Z0)2 + O(h h))ζ0 h .

Then
 

using
 

the
 

relationship
 

(8),
 

we
 

have

Z1 = Z0 + f(Z0)h + g(Z0)ζ 0 h +
1
2

􀆟f
􀆟z

(Z0) g
Z1 + Z0

2( ) ζ0 h + f
Z1 + Z0

2( ) h( ) h +

1
2

􀆟g
􀆟z

(Z0) g
Z1+Z0

2( ) ζ0 h( ) + f Z1+Z0

2( ) h) ζ0 h +

1
8

􀆟2g
􀆟z2(Z0) g

Z1+Z0

2( ) ζ0 h + f
Z1 +Z0

2( ) h( )
2

ζ0 h +

O(h2)

= Z0 + f(Z0)h + g(Z0)ζ 0 h +
1
2

􀆟g
􀆟z

(Z0)g(Z0)ζ 2
0h +

1
4

(􀆟g
􀆟z

(Z0)) 2g(Z0)ζ 3
0h h +

1
2

􀆟f
􀆟z

(Z0)g(Z0)ζ0h h + 1
2

􀆟g
􀆟z

(Z0)f(Z0)ζ0h h +

1
8

􀆟2g
􀆟z2 (Z0)g2(Z0)ζ 3

0h h + O(h2) .

Since

Z(t1) = Z0 +∫t 1

t0
f(Z(s))ds +∫t 1

t0
g(Z(s)) 􀳱 dW(s).

Expanding
 

Z( s)
 

at
 

Z0
 and

 

inserting
 

the
 

relationship
 

into
 

the
 

above
 

equation,
 

we
 

have
Z( t1) = Z0 + f(Z0)h + g(Z0)ΔW0 +

1
2

􀆟g
􀆟z

(Z0)g(Z0)(ΔW0) 2 +

􀆟g
􀆟z

(Z0)( )
2

g(Z0)∫t 1

t0
∫s

t0
∫u

t0
􀳱 dW(p) 􀳱

dW(u) 􀳱 dW( s) +
􀆟g
􀆟z

(Z0) f(Z0)∫t 1

t0
∫s

t0
du 􀳱 dW( s) +

􀆟f
􀆟z

(Z0)g(Z0)∫t 1

t0
∫s

t0
􀳱 dW(u)ds +

1
2

􀆟2g
􀆟z

(Z0)g2(Z0)∫t 1

t0
∫s

t0
􀳱 dW(u)( )

2
􀳱

dW( s) + O(h2) .
Using

 

the
 

properties
 

of
 

Stratonovich
 

multiple
 

integrals[12]
 

and
 

the
 

relationship
 

(9),
 

we
 

have

‖ EE (Z1 - Z( t1))‖ = O(h2),
　 (EE ‖Z1 - Z( t1)‖2) 1 / 2 = O(h3 / 2) . (13)

Then
 

by
 

the
 

Chebyshev’s
 

inequality,
 

we
 

get
P(‖Z1 - Z( t1)‖ - EE ‖Z1 - Z( t1)‖ ≥ h)

≤P( | ‖Z1 -Z( t1)‖-EE ‖Z1 - Z( t1)‖ | ≥ h)

≤
Var‖Z1 - Z( t1)‖

h2 .

We
 

have
Var‖Z1 -Z(t1)‖= EE ‖Z -Z(t1)‖2 -(EE ‖Z1 -Z(t1)‖)2

≤ O(h3) + O(h4) = O(h3) .
Thus
P(‖Z1 - Z(t1)‖ ≥ EE ‖Z1 - Z(t1)‖ + h) ≤O(h).
Since

 

EE ‖Z1 - Z(t1)‖≤(EE ‖Z1 - Z(t1)‖2)1/ 2 = O(h3/ 2),
 

we
 

have
P(‖Z1 - Z( t1)‖ ≥ O(h3 / 2) + h) ≤ O(h) .

Therefore
 

P(‖Z1 - Z( t1)‖ ≥ 2h)
≤ P(‖Z1 - Z( t1)‖ ≥ O(h3 / 2) + h)
≤ O(h) .

Since
 

Z( t1) ∈ [L1,L2] 2m ,
 

then
 

we
 

can
 

derive
P(Z1 ∈ [L1 - 2h,L2 + 2h] 2m)
≥ P(‖Z1 - Z( t1)‖ ≤ 2h)
≥ 1 - O(h) .

Let
 

h → 0,
 

we
 

obtain
 

P(Z1 ∈ [L1,L2] 2m) = 1.
 

That
 

is,
 

for
 

Z0 ∈ [L1,L2] 2m ,
 

we
 

have
 

proved
 

that
 

Z1 ∈
[L1,L2] 2m

 

almost
 

surely.
Similarly,

 

repeat
 

the
 

process
 

for
 

Z j,j = 1, …,
N - 1,

 

we
 

can
 

obtain
 

that
 

Z j ∈ [L1,L2] 2m
 

almost
 

surely
 

for
 

j = 2,…,N .
 

By
 

the
 

Darboux-Lie
 

theorem
 

we
 

know
 

that
 

θ -1
 

exists
 

and
 

is
 

continuous.
 

Therefore
 

y j = θ -1(Z j,C)
 

(j = 0,…,N )
 

are
 

bounded
 

almost
 

surely. □
Remark

 

2. 1 　 Similar
 

to
 

the
 

discussion
 

in
 

Ref.
 

[5]
 

(Remark
 

3. 5),
 

although
 

the
 

system
 

(7)
 

may
 

not
 

have
 

global
 

Lipschitz
 

coefficients,
 

the
 

stochastic
 

fundamental
 

convergence
 

theorem
 

by
 

Milstein
 

et.
 

al.
 

given
 

in
 

Ref.
 

[12]
 

( Theorem
 

1. 1
 

of
 

Ref.
 

[ 12 ])
 

can
 

still
 

be
 

applied,
 

i. e. ,
 

the
 

equation
 

(13)
 

can
 

imply
 

that
 

EE ‖ZN - Z(T)‖2 ≤ O(h2), (14)
namely,

 

the
 

midpoint
 

method
 

applied
 

to
 

the
 

system
 

(7)
 

is
 

of
 

root
 

mean-square
 

order
 

1.
 

This
 

is
 

because
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for
 

any
 

given
 

(Z0,C) = θ(y0)
 

with
 

y0 > 0,Z( t)
 

( t
∈ [ t0,T])

 

and
 

{Z j}
 

( j = 0, …,N )
 

are
 

almost
 

surely
 

bounded
 

in
 

a
 

certain
 

[L1,L2] 2m ,
 

which
 

is
 

a
 

convex
 

compact
 

subset
 

of
 

RR 2m ,
 

and
 

the
 

coefficients
 

J -1 ΔK
 

and
 

cJ -1 ΔK
 

of
 

the
 

system
 

( 7 )
 

are
 

continuously
 

differentiable
 

functions
 

such
 

that
 

they
 

are
 

Lipschitz
 

continuous
 

on
 

[L1,L2] 2m ,
 

which
 

then
 

ensures
 

the
 

validity
 

of
 

the
 

stochastic
 

fundamental
 

convergence
 

theorem
 

on
 

this
 

system
 

( see
 

proof
 

of
 

Theorem
 

1. 1
 

in
 

Ref.
 

[12]).
 

Theorem
 

2. 2 　 Under
 

Assumption
 

2. 1,
 

and
 

assuming
 

the
 

Jacobian
 

matrix
 

of
 

θ -1(Z,C)
 

is
 

continuous,
 

then
 

the
 

TM
 

method
 

for
 

system
 

( 4)-
(5)

 

is
 

of
 

root
 

mean-square
 

order
 

1.
Proof　 By

 

the
 

Darboux-Lie
 

theorem
 

(Theorem
 

1. 1),
 

we
 

know
 

θ -1
 

exists
 

and
 

is
 

differentiable.
 

Under
 

the
 

assumption
 

that
 

(θ -1)′
 

is
 

continuous,
 

and
 

using
 

(14),
 

we
 

have
EE ‖yN - y(T)‖2 = EE ‖θ-1(ZN,C) - θ-1(Z(T),C)‖2

= EE ‖(θ-1)′ ξ,C( ) (ZN -Z(T),0)‖2

≤K5EE ‖ZN - Z(T)‖2 ≤O(h2),
(15)

for
 

certain
 

ξ = τZN + (1 - τ)Z(T)
 

( τ ∈ [0,1] )
 

and
 

K5 > 0
 

which
 

is
 

the
 

bound
 

of
 

the
 

norm
 

of
 

the
 

continuous
 

matrix-valued
 

function
 

(θ -1)′
 

on
 

the
 

compact
 

subset
 

[ L- 1, L- 2] n
 

of
 

RR n ,
 

where
 

L- 1 =

min{L1,C1, …,Cl},
 

L- 2 = max{L2,C1, …,Cl} ,
 

and
 

Ci
 denotes

 

the
 

i-th
 

element
 

of
 

the
 

vector
 

C .
 

The
 

equation
 

(15)
 

implies
 

that
 

the
 

TM
 

method
 

is
 

of
 

root
 

mean-square
 

convergence
 

order
 

1. □

3　 Numerical
 

experiments
　 　 Consider

 

a
 

three-dimensional
 

L-V
 

system
 

with
 

Stratonovich
 

white
 

noise
 

perturbation
 [5]

 

dy( t) = B(y( t)) ΔH(y( t))(dt + c 􀳱 dW( t)),

B(y( t)) =
0 υyayb bυyayc

- υyayb 0 - ybyc

- bυyayc ybyc 0
( ) ,

(16)
H(y) = abya + yb + γlnyb - ayc - μlnyc,

y(0) = y0,
where

 

y = (ya,yb,yc) T,y0 = (y0,a,y0,b,y0,c) T ,
 

and
 

B =
0 v bv
- v 0 - 1
- bv 1 0

( ) .
The

 

Casimir
 

function
 

of
 

this
 

system
 

is
 

C(y) = - 1
υ

lnya - blnyb + lnyc

≡ - 1
υ

lny0,a - blny0,b + lny0,c C.

Let
 

y0 = [1. 0,1. 9,0. 5] T ,
 

and
 

the
 

parameters
 

a = - 2,b = - 1,υ = - 0. 5,γ = 1,μ = 2,c = 0. 2.
 

We
 

can
 

check
 

that
 

the
 

vectors
 

β = (ab,1, - a),p = (0,
- γ,μ)

 

satisfy
 

the
 

Assumption
 

2. 1
 

by
 

taking
 

s0 = 1,
α = ( - 6, - 3, - 3) T .

 

Then
 

the
 

exact
 

solution
 

of
 

the
 

system
 

( 16 )
 

is
 

almost
 

surely
 

bounded
 

and
 

positive.
Similar

 

to
 

the
 

discussion
 

in
 

section
 

3. 3
 

of
 

Ref.
 

[1],
 

based
 

on
 

the
 

Darboux-Lie
 

Theorem
 

1. 1,
 

we
 

can
 

find
 

the
 

following
 

coordinate
 

transformation
 

y- =
θ(y)

 

that
 

converts
 

(16)
 

to
 

its
 

canonical
 

form
 

(7):
 

ya = lnyc,
 

yb = - lnyb,
 

yc = C, (17)
by

 

solving
 

the
 

equations:
 

{ya,ya} = 0,{ya,yb} = - 1,{ya,yc} = 0,

{yb,ya} = 1,{yb,yb} = 0,{yb,yc} = 0,

{yc,ya} = 0,{yc,yb} = 0,{yc,yc} = 0. (18)
Owing

 

to
 

skew-symmetry
 

of
 

Poisson
 

brackets,
 

the
 

nine
 

equations
 

in
 

( 18 )
 

can
 

be
 

reduced
 

to
 

the
 

following
 

three
 

equations
 

{yb,ya} = 1,{yc,ya} = 0,{yc,yb} = 0. (19)

We
 

can
 

choose
 

y3
 

to
 

be
 

the
 

Casimir
 

function
 

C(y)≡C
which

 

fulfills
 

the
 

last
 

two
 

equations
 

naturally.
 

The
 

first
 

equation
 

is
 

a
 

partial
 

differential
 

equation
 

with
 

unknown
 

functions
 

ya =ya(ya,yb,yc),yb =yb(ya,yb,
yc) and

 

their
 

partial
 

derivatives,
 

which
 

may
 

possess
 

many
 

solutions,
 

implying
 

that
 

the
 

coordinate
 

transformations
 

may
 

not
 

be
 

unique.
 

If
 

we
 

let
 

ya =

lnyc ,
 

we
 

find
 

that
 

yb = - lnyb
 solves

 

the
 

equation.
 

Thus
 

we
 

get
 

the
 

coordinate
 

transformation
 

(17).
 

In
 

general,
 

for
 

a
 

given
 

Poisson
 

system
 

satisfying
 

the
 

conditions
 

of
 

the
 

Darboux-Lie
 

Theorem
 

1. 1,
 

one
 

can
 

find
 

such
 

coordinate
 

transformations
 

by
 

solving
 

the
 

partial
 

differential
 

equations
 

in
 

( 6)
 

defined
 

by
 

the
 

Poisson
 

bracket
 

associated
 

with
 

the
 

structural
 

matrix
 

303



中国科学院大学学报(中英文) 第 41 卷

B(y)
 

of
 

the
 

system.
 

The
 

Casimir
 

functions
 

can
 

be
 

found
 

by
 

exploring
 

the
 

kernal
 

space
 

of
 

B(y),
according

 

to
 

the
 

definition
 

of
 

a
 

Casimir
 

function.

Denoting
 

( ya, yb) = (P,Q) ,
 

we
 

get
 

the
 

following
 

SHS

d
P
Q

é

ë
ê
ê

ù

û
ú
ú =

0 - 1
1 0

é

ë
ê
ê

ù

û
ú
ú

ΔK(P,Q)(dt + c 􀳱 dW( t)),

(20)
where

 

K(P,Q) = abexp(υ(C - P - bQ)) +
exp( - Q) - γQ - aexp(P) - μP .

 

We
 

apply
 

the
 

midpoint
 

method
 

to
 

the
 

system
 

( 20)
 

to
 

get
 

(P j,
Q j),j = 0,1,…,N.

 

Then
 

by
 

using
 

the
 

inverse
 

transformation
 

y j = (exp(υ(C - P j - bQ j)),
exp( - Q j),exp(P j)) T ,

 

we
 

obtain
 

the
 

numerical
 

solution
 

{y j,j = 0,1, …} for
 

the
 

stochastic
 

L-V
 

system
 

(16).
 

In
 

Fig.
 

1
 

we
 

show
 

one
 

sample
 

path
 

of
 

ya,yb,
 

and
 

yc
 produced

 

by
 

our
 

method.
 

It
 

can
 

be
 

seen
 

that
 

the
 

numerical
 

solution
 

is
 

positive
 

and
 

bounded,
 

coinciding
 

well
 

with
 

the
 

reference
 

exact
 

solution
 

of
 

system
 

( 16).
 

Hereby
 

we
 

take
 

h = 10 -3,
 

and
 

the
 

exact
 

solution
 

is
 

approximated
 

by
 

applying
 

the
 

midpoint
 

method
 

to
 

system
 

(16)
 

with
 

tiny
 

time
 

step
 

10-5 .
 

Fig. 1　 Sample
 

paths
 

arising
 

from
 

our
 

method

Figure
 

2
 

shows
 

the
 

evolution
 

of
 

the
 

Casimir
 

function
 

with
 

respect
 

to
 

t
 

produced
 

by
 

our
 

method
 

and
 

the
 

midpoint
 

method
 

directly
 

applied
 

to
 

the
 

system
 

( 16 ).
 

Clearly
 

our
 

method
 

can
 

exactly
 

preserve
 

the
 

Casimir
 

function,
 

while
 

the
 

midpoint
 

Fig. 2　 Casimir
 

evolution
 

by
 

our
 

method
and

 

the
 

midpoint
 

method

method
 

fails
 

to
 

preserve
 

the
 

Casimir
 

function.
 

Parameters
 

here
 

are
 

the
 

same
 

with
 

those
 

for
 

Fig.
 

1.
Figure

 

3
 

illustrates
 

the
 

evolution
 

of
 

the
 

Hamiltonian
 

H(y)
 

of
 

the
 

system
 

(16)
 

produced
 

by
 

our
 

method
 

and
 

the
 

midpoint
 

method.
 

It
 

can
 

be
 

seen
 

that
 

our
 

method
 

can
 

nearly
 

preserve
 

the
 

Hamiltonian
 

function
 

of
 

the
 

system,
 

while
 

the
 

midpoint
 

method
 

produces
 

much
 

larger
 

error
 

in
 

the
 

Hamiltonian
 

evolution.
 

Parameters
 

are
 

the
 

same
 

with
 

those
 

for
 

Fig.
 

1.
Finally,

 

Fig.
 

4
 

shows
 

that
 

our
 

method
 

is
 

of
 

root
 

mean-square
 

convergence
 

order
 

1,
 

coinciding
 

with
 

the
 

theoretical
 

result
 

in
 

Theorem
 

2. 2.
 

Hereby
 

h =
[2 -11,2 -10,2 -9,2 -8,2 -7] ,

 

and
 

500
 

sample
 

paths
 

are
 

taken
 

to
 

approximate
 

the
 

expectation.
 

Other
 

parameters
 

are
 

the
 

same
 

with
 

those
 

for
 

Fig.
 

1.
 

Fig. 3　 Hamitonian
 

evolution
 

by
 

our
method

 

and
 

the
 

midpoint
 

method
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Fig. 4　 Root
 

mean-square
 

convergence
 

order

4　 Conclusion
　 　 We

 

propose
 

a
 

numerical
 

algorithm
 

based
 

on
 

the
 

Darboux-Lie
 

theorem
 

and
 

the
 

midpoint
 

method
 

for
 

a
 

class
 

of
 

stochastic
 

Poisson
 

systems,
 

which
 

can
 

preserve
 

both
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions
 

of
 

the
 

original
 

systems.
 

We
 

also
 

prove
 

that
 

the
 

proposed
 

method
 

has
 

root
 

mean-square
 

convergence
 

order
 

1.
 

Numerical
 

tests
 

verify
 

the
 

theoretical
 

results
 

and
 

illustrate
 

the
 

effectiveness
 

of
 

the
 

method.
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