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Abstract In this paper, we consider the structure-preserving numerical simulation of a class of
stochastic Poisson systems, i. e. the stochastic Lotka-Volterra systems. We propose a stochastic
Poisson integrator for the systems which can preserve the Poisson structure and the Casimir functions
of the systems, and prove that the numerical integrator has root mean-square convergence order 1.
Numerical experiments are performed to verify the theoretical results.
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Stochastic Poisson systems are defined as the where y(1)= (y,,,v,)", B(y)= (b(¥)) 1 i

form' " skew-symmetric matrix, and satisfies the condition
dy(2) = B(y(t)) (VHo(y(¢))dt + w (0by(y) ()
s ' > ( (;y bu(y) + ’I‘y b(y) +
> VH (y(1)) = dW,(1)), (1) '
r=1 abki(y)b () )—O (2)
(t) =y,, ay, ! ’
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for all i,j,k € {1,--,n}.H(y),r =0, ,s are
W<t) = (Wl(t),“"

s-dimensional standard Wiener

smooth scalar functions.
W(t)) is an
process, and o stands for the Stratonovich product.
We assume that B(y) is of constant rank 2m =n -1,
0sl<n.

A skew-symmetric matrix B(y) with property
(2) can define the Poisson bracket {F,G} (y) of
two smooth functions F(y) and G(y) as Refs. [ 1-
2]

LCIOED N

or equivalently in the form

[F,G} (y) =VF(y)"'B(y)VG(y).

It is known that almost surely the phase flow

aG(y
b.
() iy

i J

9

®,.,:Yo Y (1) of the stochastic Poisson system (1)

. 1
preserves the Poisson structure' " ,

ay(t) ay(e)"
TOB(-%) ay,

=B(y(1)),Vi= 1,

(3)

A function C(y) is called Casimir function of the
system (1) if

VC(y)'B(y) =0,

It is not difficult to prove that each Casimir function

for all y.

C(y) is an invariant for the system (1),
0 -1
I, 0

m

Ifn =2m and B(y) = ( m) , where I

denotes an m-dimensional identity matrix, the
stochastic Poisson system (1) degenerates to the
stochastic canonical Hamiltonian system. The phase
flow of a stochastic Hamilton system preserves the

“). The Poisson structure of

symplectic structure
stochastic Poisson systems is an extension of the
symplectic  structure.  For stochastic  Poisson
systems, there arised some numerical results in
recent years. For a special class of stochastic
Poisson systems, numerical methods are proposed in
Ref. [5] and Ref. [ 6] respectively, where the
method proposed in Ref. [5] can exactly preserve
quadratic Casimir functions and the energy, while
the method given in Ref. [ 6] is energy-preserving
with the ability of arriving any prescribed order. In
Ref. [7], for stochastic Poisson systems of even

dimensions, the structure-preserving Runge-Kutta

and partitioned Runge-Kutta methods are proposed.
The Darboux-Lie theorem and symplectic methods
are used to obtain structure-preserving numerical
schemes for stochastic Poisson systems in Ref. [1].

we consider the following

(L-V)

In this paper,

Lotka-Volterra
[5,8]

stochastic system  with

Stratonovich white noise
dy(¢) =B(y(t)) VH(y(2)) (dt +co dW(2)),
Y(to) =Yo,

(4)
with

H(y)= 2" By ~piny,,
B(y) =diag(y,, ,y,) Bdiag(y,,*,y,) ,

(5)
where B8, # 0(i = 1,--,n), B is a skew-symmetric
constant matrix and ¢ > 0 measures the size of the
perturbation. Moreover we assume the Assumption
2.1 holds. It was proved in Ref. [ 8] that, under
Assumption 2. 1, for any given y, > 0, the system
(4)-(5) has a unique solution which is positive for
all ¢ = ¢, almost surely. Hereby and in the sequel we
write a vector@ > 0 to mean that each element of a is
positive. Meanwhile, the system (4)-(5) is a
stochastic Poisson system, with Casimir functions
C(y)=any, +- +a,ny,,a@=(a,,,a,) €
Ker B and Hamiltonian H(y) which is smooth for

y > 0.

In this paper, we transform the stochastic L-V
system to a stochastic Hamiltonian system by
coordinate transformation. Then we apply the

midpoint method, which is a symplectic scheme, to
the stochastic Hamiltonian system and by using the
inverse transformation to obtain the numerical
scheme for the stochastic L-V system. This method
is shown to preserve the Poisson structure and
Casimir functions of the stochastic L-V system. We
further prove that the method is of root mean-square

convergence order 1.
1 A Poisson integrator

1.1 The Darboux-Lie theorem
The Darboux-Lie theorem is as follows.

Theorem 1.1 (see Ref. [2]) Suppose that
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the matrix B(y) defines a Poisson bracket and is of
constant rank n — [ = 2m in a neighborhood of

¥, € R". Then there exist functions P,(y), -,
Pm(J’) an(J’> ’ "',Qm(.)’> ’ and C1(J’) s Ty Cz(.)’)

satisfying

(PPt =0, {P,Q}==6, 1{P,C} =0,
{Qi’Pj} =8;j, {Qw()j} =0, {Q[’CU} =0,
{C};’P]‘% =0, {Ck?Qj} =0, {Ck’ct;} =0,

(6)
for i,j € {1, «-,m}, v € {1, +-,I} on a
neighborhood of y,. The gradients of P,,(Q,,C,, (i,j
= {1’ ’l})
independent, so that the R "— R " mapping 6(y) :
y= (P (y) s Pu(3),Q0(y) o, 0, (3) , Ci(y)

--+,C,(y)) constitutes a local change of coordinates

mib, v e {1, are linearly

to canonical form.

If we denotey = (Z(y)",C(y)")" , where
Z(y)=(P(y)",0(»")",
P(y)=(P,(y),,P,(»))",
0(y)=(Q,(y),,0Q,(»)",
C(y)=(C,(y),,CON",
by the Darboux-Lie theorem, the system (4) can be

transformed to '

{dZ =J'V,K(Z,C) (di + co dW (1)),
dc =0,

which is a stochastic Hamiltonian system ( SHS)

(7)

with constant parameter vector C , and K(Z,C) =

0 m
K(f)zH(}’),J_] =( ).Kis smooth owing

I, 0

to the smoothness of H .

According to the results in Ref. [ 1], applying
to SHS (7) and
transforming the scheme back to system (4) by the

a symplectic scheme then
inverse transformation y = 67'(y) , one gets a

stochastic Poisson integrator for the stochastic
Poisson system (4), which can preserve both the
Poisson structure and the Casimir functions of system
(4) almost surely.
1.2 The numerical scheme

As mentioned above, stochastic Poisson
integrators can be obtained by using symplectic
methods to the SHS arising from the coordinate

transformation. It is well-known that the midpoint

method is a symplectic method for SHS'”!. Therefore
we propose a numerical scheme for system (4)
derived from the transformation of the midpoint
scheme, which we call the transformed midpoint
(TM) method in the sequel.

The TM method :
(a) By the Darboux-Lie theorem, we find a
coordinate transformation @(y):y —y = (Z(y)",
C")" , which transforms system (4) with initial
value y, to SHS (7) with initial value Z, =
(P(yo)",0(y) )"
(b) Apply the midpoint method to SHS (5)

» Z. +Z A
Z/’+I :Zj +J VZK ?,C (h +CAI'Vj)9

(8)
where h is the time step and AEAV]- (j=0,1,---) are
truncated Wiener increments ( explained below).
(¢) Solve equation (6) for Z,,,,
= 0_1(y/+1) with Vi =
(ZJ.T+1 ,C") " to get the numerical solution Y. =0,
1,:--) for system (4).

In equation (8), Aﬁ’/j; = Jﬁgj is a truncation of
AW, =ﬁ§j , where & ~ N(0,1) and
ELf 1 &1 <A,
£ =34,,i0 & > A,
-A,,if§ <-4,
where A4, ; = V2E1 In(h) I (for an integer k =
1)

estimates

then use the

inverse transformation y;,,

Moreover, one has the
[9-10]

E[fj_gj]zghzy (9)
0<E[& -] =(1+2/2k1 In(h) | A",
E[& -1 < 27h

As discussed in Ref. [9], such a truncation is a

following

remedy to fix the issue in implementing an implicit
scheme caused by the unboundedness of AW,(j =0,
1,--+). By choosing sufficiently large parameter k ,
the truncation error can be merged into the error of
the numerical scheme, and for a method of root
mean-square order [ , it is sufficient to choose k =
2l. Here in this paper we take k£ = 4 in A, which is
sufficient for our discussion.

Remark 1.1 With the truncation of AW, , the
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fixed point iteration by solving equation (8) for Z;

+1

can converge for sufficiently small h, similar to the
discussion in Refs. [9, 11].

Remark 1.2 The Darboux-Lie transformation
0 (y) varies for different concrete problems, usually
found by solving the equations in (6).

Then by the discussion in section 1.1 we have
the following conclusion.

Theorem 1.2 The TM method preserves the
Poisson structure and Casimir functions of the

Stochastic L-V System (4)-(5).
2 Convergence order

In this section we will prove the root mean-
square convergence order of the TM method.
(see Ref. [ 8]) Assume
that for the parameters 8 = (8,,---,8,)".p = (p,,
--+.p,) " of the system (4)-(5), there exists a real

Assumption 2.1

number s, € R and a vector@ € KerB such that
B > 0,
-sp +a < 0.

(see Ref. [ 8]) Under

Assumption 2. 1, for any given initial valuey, > 0,

(10)

Lemma 2.1

the exact solution of system (4)-(5) is almost
surely bounded.

Based on Lemma 2.1, we can prove the
boundedness of the numerical solution of the TM
method. We assume the numerical approximation is
performed on the time interval ¢t € [¢,,T] , and
ty=T.

Theorem 2.1 Under Assumption 2.1, given
Yo > 0, the numerical solution {y;{(j =1,--- ,N)
arising from the TM method is bounded almost
surely.

Proof Giveny, > 0, by Lemma 2.1, the
exact solution y(t) of system (4)-(5) is almost
surely bounded. Since @(y) is continuous by the
Darboux-Lie theorem (0’ (y) exists and invertible) ,
the solution of system (7) is almost surely bounded.
This means there are constants L,,L, such that
(P(y)",0(y)")" € [L,,L,]°" almost surely. For
avectora € R™, we saya € [L,,L,]”" to mean

that each element of @ is in [ L,,L,] .

ForZ, € [LI,LZ]Z'" , we define

Z+7Z A
H(Z)=1Z, +J1VZK( 5 °,C) (h + cAW,) .

(11)
Then the scheme (6) can be written as
Z-6(z,), (12)
when j = 0. We can use the fixed-point iteration
method to solve (12). Select the initial value z of
iteration that satisfies0 < ||z —=Z, || < 1, thusz e
(L, - 1,L, + 1]*"\Z,. We have
+Z,

I (z)~2, || = | J” VK(Z ,c) (h+ o) |

72+ 7
=1 w(* L ) N er g )
7+ 7Z
Since ¢ e (L, - 1,L, + 17", and the

function J ' VK(z,C) is continuous, we have
l(z) =Z, || <Ki(h+cliylVh),
for certain K, > 0. Sincel {1 <A, =2k Inh 1,
and il Inhl —0as h—0, we can choose sufficiently
small h, such that forh < h,, K;(h+cl {1 /h) <
1, which implies ¢p(z) € [L, = 1,L, + 1]°".
On the other hand, denote
f(2): =J'V.K(z,C) ,g(z): =] 'V,K(z,C),
then for any z,,z, € [L, = 1,L, + 1]* , due to

u* Z L - 1,L +1]™
E[I ’2+]

smoothness of K and

(i=1,2) , it is not difficult to see from (11) that
there exists constant K, > 0 such that
1/(z)) = f(z) | <K llz) —z |-

Choose h, > 0 such that forh < h,, K,(h +cl {,|
W) < 1, which implies || b(z,) - b(z,) | <
|z, =z, || . Then for h < h,: =min{h,,h,}|, ¢P:
(L, - 1,L, + 11" > [L, - 1,L, + 1]™is a
contraction mapping. According to the contraction

mapping principle, the sequence of iterations

2m

converges and Z, € [L, - 1,L, + 1]

Expanding the midpoint scheme, by the
smoothness of K and the boundedness of Z, and Z ,

we get

Z +Z Z +Z7Z
ZI=ZO+hf( ]2 0)+g( ‘2 O)gom
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1 of
# (12 Lz, -2,) 0 |+

1 og
(g(Zo) +E(‘TZ) (Z0>(Zl _Zo) +

”g<z><z = 2,)* + O(h/i)) .

Then using the relationship (8), we have
Z,=Z,+f(Z,)h +g(Z, )go“/ﬁ +

L e 7))
S
e f e
o)
=Z, + f(Z)h + g(Z )¢k +

1 og

?a*(z V8(Zy){oh +

LBz ez En +

of

(Z V8(Zy) L ohlh +— —(Zo)f(z())gohﬂ +

2
19 2 3 2
gaizz(zo)g (Zo)gohJ}7 +0(h7).
Since

Z(1,)=Z +j F(Z(s))ds +j g(Z(s)) = dW(s).

Expanding Z (s ) at Z, and inserting the relationship
into the above equation, we have

Z(t,)=Z, +f(Zy)h +g(Z,) AW, +

1 og 2
?aiz(zo)g<zo) (AW,)" +

(%z)) sz ['[ [+ awip) -

dW(u) .
(z 2z [ due awis) +

l<zo>g<zo>jt‘f[ W) ds +

dW(s) +

1 0’ 2
g @[ ([ - awin)
dW(s) + O(h*).

Using the properties of Stratonovich multiple

integrals“ﬂ and the relationship (9), we have

I E(Z, - Z(1)) | =0(n*),
(E1Z, -Z() )" =0(n"). (13)
Then by the Chebyshev’ s inequality, we get

PONZ -Z) |l —ENZ, -Z(t,) || =h
<P(I|1Z, -Z(t,)) | -E [|Z, - Z(t,) [| 1 = h)
Var ” Z1 _Z(tl) ”
= .
hZ
We have

Var |Z, -Z@) | = E |Z-Z@) |* - & |Z, -Z¢) ||}
< O(h’) +0(h*)=0(h).

Thus
PCIZ -Z(t) || ZE |Z, -Z(,) | +h) < O(h).
Since

E ||Zl _Z(tl) ”
we have

P( ”Z] _Z<l|) ”
Therefore

(E 12, -Z@,) )" = 0(™),

= 0(h"*) +h) < O0(h).

P(CIZ,
$P( ”Z] _Z(ll) ”
< O(h).

Since Z(t,) € [L, ,Lz]z'" , then we can derive

_Z(tl) ” BZh)
=0(h"?) +h)

P(Z, € [L, - 2h,L, + 2h]™")
=P(|Z -Z(t,) || <2h)
=1-0(h)

Let h—0, we obtain P(Z, € [L,,L,]”")=1. That

is, for Z, € [L,,L,]™ , we have proved that Z,

[L,,L,]*
Similarly, repeat the process for Z;,j = 1,

N =1, we can obtain that Z; € [L, ,L, 17" almost

-,N . By the Darboux-Lie theorem

almost surely.

surely forj =2

we know that @' exists and is continuous. Therefore

71(Zj,C) (j=0,---,N ) are bounded almost
surely. L]
Remark 2.1  Similar to the discussion in

Ref. [5] (Remark 3.5),
may not have global Lipschitz coefficients, the

although the system (7)

stochastic fundamental convergence theorem by
Milstein et. al. given in Ref. [12] (Theorem 1.1
of Ref.
equation (13) can imply that

EZy-Z(T) > <o), (14
namely, the midpoint method applied to the system

[12]) can still be applied, i. e., the

(7) is of root mean-square order 1. This is because
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for any given (Z,,C) =0(y,) withy, > 0,Z(t) (¢
e [t,,T]) and {Zj} (j =0, ---,N) are almost

surely bounded in a certain [ L,,L,]”" , which is a

2m

, and the coefficients

convex compact subset of R
J'VK and ¢J7'VK of the

continuously differentiable functions such that they

system (7 ) are

are Lipschitz continuous on [ L,,L,]* , which then
ensures the validity of the stochastic fundamental
convergence theorem on this system (see proof of
Theorem 1.1 in Ref. [12]).

Theorem 2. 2

assuming the Jacobian matrix of @7 '(Z,C) is

Under Assumption 2.1, and

continuous, then the TM method for system (4 )-
(5) is of root mean-square order 1.

Proof By the Darboux-Lie theorem ( Theorem
1.1), we know @' exists and is differentiable.
Under the assumption that (~") " is continuous, and
using (14), we have
E llyy -y |*=E [67(Z,,0) -0 (Z(D),C) |’

=E [07)(£C) Zy -Z(T),0) |

<KE [ Zy -Z(D) || < O(h*),
(15)
for certaing =7Z, + (1 —7)Z(T) (7 € [0,1])
and K5 > 0 which is the bound of the norm of the
continuous matrix-valued function (@7')’ on the
compact subset [ L,, L,]" of R ", where L, =
mini{L,,C,, ---,C,}, L, = max{L,,C,, ---,C,} ,
and C, denotes the i-th element of the vector C . The
equation (15) implies that the TM method is of root

mean-square convergence order 1. L]

3 Numerical experiments

Consider a three-dimensional L-V system with

Stratonovich white noise perturbation"”

dy(1) =B(y(1)) VH(y(2)) (dt +co dW(z)),
0 vy,y, buy,y.
—vyy, O “ XYl
—bvy,y. yy. O

B(y(t))=

(16)
H(y) = aby, +y, + ylny, — ay, —ulny,,
y(0) =y,,
wherey = (v,,5,,5.) ¥ = (Yo.usYousY0.)  » and

0 v by
B=(-» 0 -1
-bv 1 0

The Casimir function of this system is

1
C(y) =-—ny, = blny, +Iny,

1
E_ilnyOa_blny()b-’rlny()c:zc‘
v , s ,

Let y, = [1.0,1.9,0.5]" , and the parameters
a=-2,b=—-1,v=-0.5,y=1,u=2,c=0.2. We
can check that the vectors 8 = (ab,1, —a) ,p = (0,
- v,u) satisfy the Assumption 2. 1 by takings, =1,
a= (-6, -3, -3)". Then the exact solution of
the system (16) is almost surely bounded and
positive.

Similar to the discussion in section 3. 3 of Ref.
[1], based on the Darboux-Lie Theorem 1.1, we
can find the following coordinate transformation y =

O(y) that converts (16) to its canonical form (7) :

vo =y, y, ==y, 5, =C,  (17)
by solving the equations
v =00 0yomt == 1. 0y,.0. =0,
ot =1yt =000y,,0.1 =0,
rorad =000yt =000yt =0.(18)

Owing to skew-symmetry of Poisson brackets, the
nine equations in ( 18) can be reduced to the

following three equations
=0,1y,,7} =0.(19)

We can choose yT to be the Casimir function C(y)=C

vl = Ly
which fulfills the last two equations naturally. The

first equation is a partial differential equation with

unknown functions 9? ZQZ( Yus¥psYe) ,j; Z}Z( YusYhs

y,) and their partial derivatives, which may possess

many solutions, implying that the coordinate

transformations may not be unique. If we let y, =

Iny, , we find that y: =— Iny, solves the equation.
Thus we get the coordinate transformation (17). In
general, for a given Poisson system satisfying the
conditions of the Darboux-Lie Theorem 1. 1, one can
find such coordinate transformations by solving the
partial differential equations in (6) defined by the

Poisson bracket associated with the structural matrix
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B(y) of the system. The Casimir functions can be
found by exploring the kernal space of B(y),

according to the definition of a Casimir function.

Denoting (yj, }Z) = (P,Q), we get the
following SHS

Pl [0 -1

d[QJ—[l 0 JVK(P,Q)(dt+COdW(t)),

(20)
where K(P,Q) = abexp(v(C - P - bQ)) +
exp(—= Q) —y0Q — aexp(P) — uP . We apply the
midpoint method to the system (20) to get (P;,
Q). = 0,1,-~-,N. Then by using the inverse
transformation y, = (exp(v(C - P, - bQ;)),
exp( — Q,) ,exp(P;) )", we obtain the numerical
solution | y,,j = 0,1, .-} for the stochastic L-V
system (16).

In Fig. 1 we show one sample path of y,,y,,
and y, produced by our method. It can be seen that
the numerical solution is positive and bounded,
coinciding well with the reference exact solution of
system (16). Hereby we take h = 1077, and the
exact solution is approximated by applying the
midpoint method to system (16) with tiny time step
107,

Figure 2 shows the evolution of the Casimir
function with respect to ¢ produced by our method
and the midpoint method directly applied to the
system ( 16 ). Clearly our method can exactly

preserve the Casimir function, while the midpoint

10 1
t

« reference solution
our method

Fig. 1 Sample paths arising from our method

541 %
-0.0510 T T T T T T T T T
----- midpoint method
-0.051 5} —— our method
-0.052 0}
-0.052 5}
-0.053 0}
-0.053 5}
o
-0.054 0} Ny, .
R W -
-0.054 5+ [ Y ,_.-\
~0.055 0} =
—0.055 5
-0.056 0 :
0 2 4 6 8 10 12 14 16 18 20

Fig.2 Casimir evolution by our method

and the midpoint method

method fails to preserve the Casimir function.
Parameters here are the same with those for Fig. 1.

Figure 3 illustrates the evolution of the
Hamiltonian H(y) of the system (16) produced by
our method and the midpoint method. It can be seen
that our method can nearly preserve the Hamiltonian
function of the system, while the midpoint method
produces much larger error in the Hamiltonian
evolution. Parameters are the same with those for
Fig. 1.

Finally, Fig. 4 shows that our method is of root
mean-square convergence order 1, coinciding with
the theoretical result in Theorem 2.2. Hereby h =
(271,272 278 2777 | and 500 sample paths
Other

are taken to approximate the expectation.

parameters are the same with those for Fig. 1.

69290 —
----- midpoint method
6.928 0F —— our method

6.927 0 1

69260 TN ]
6.925 0f
6.924 0f ]
6.923 0} .

6.922 0 1

6.9210
0

Fig.3 Hamitonian evolution by our

method and the midpoint method
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10! T

—e— our method

————— line of slope 1
102} ]
1073} 1
104 103 102

Fig.4 Root mean-square convergence order

4 Conclusion

We propose a numerical algorithm based on the
Darboux-Lie theorem and the midpoint method for a

class of stochastic Poisson systems, which can

preserve both the Poisson structure and the Casimir
functions of the original systems. We also prove that

the proposed method has root mean-square

convergence order 1. Numerical tests verify the

theoretical results and illustrate the effectiveness of

the method.
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