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Abstract 　 Subgroup
 

analysis
 

of
 

heterogeneous
 

groups
 

is
 

a
 

crucial
 

step
 

in
 

the
 

development
 

of
 

individualized
 

treatment
 

and
 

personalized
 

marketing
 

strategies.
 

Regression-based
 

approaches
 

are
 

one
 

of
 

the
 

main
 

schools
 

of
 

subgroup
 

analysis,
 

a
 

paradigm
 

that
 

divides
 

predictor
 

variables
 

into
 

two
 

parts
 

with
 

heterogeneous
 

and
 

homogeneous
 

effects
 

and
 

divides
 

the
 

sample
 

into
 

subgroups
 

based
 

on
 

the
 

heterogeneous
 

effects.
 

However,
 

most
 

of
 

the
 

existing
 

regression-based
 

subgroup
 

analysis
 

methods
 

have
 

two
 

major
 

limitations:
 

First,
 

they
 

still
 

consider
 

the
 

sample
 

homogeneous
 

within
 

subgroups
 

and
 

do
 

not
 

fully
 

consider
 

individual
 

effects;
 

Second,
 

the
 

common
 

contamination
 

phenomenon
 

of
 

homogeneous
 

effect
 

variables
 

is
 

not
 

taken
 

into
 

account,
 

which
 

will
 

lead
 

to
 

large
 

bias
 

in
 

the
 

model
 

results.
 

To
 

address
 

these
 

challenges,
 

we
 

propose
 

a
 

robust
 

individualized
 

subgroup
 

analysis.
 

We
 

use
 

a
 

multidirectional
 

separation
 

penalty
 

function
 

to
 

achieve
 

individualized
 

effects
 

analysis
 

for
 

the
 

heterogeneous
 

part
 

of
 

the
 

model
 

and
 

use
 

γ-divergence
 

to
 

obtain
 

robust
 

estimates
 

for
 

the
 

contaminated
 

homogeneous
 

part.
 

We
 

also
 

propose
 

an
 

efficient
 

alternating
 

iterative
 

two-step
 

algorithm,
 

combining
 

coordinate
 

descent
 

and
 

alternating
 

direction
 

method
 

of
 

multipliers
 

(ADMM)
 

techniques
 

to
 

implement
 

this
 

process.
 

Our
 

proposed
 

method
 

is
 

further
 

illustrated
 

by
 

simulation
 

studies
 

and
 

analysis
 

of
 

a
 

skin
 

cutaneous
 

melanoma
 

dataset.
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稳健的个体化亚组分析

张晓灵,任明旸,张三国
(中国科学院大学数学科学学院,北京

 

100049;
 

中国科学院大数据挖掘与知识管理重点实验室,北京
 

100049)

摘　 要　
 

异质群体的亚组分析是实现个体化医疗和个性化营销的关键所在。 基于回归的方

法是亚组分析的主要流派之一,这种范式将预测变量分为具有异质效应和同质效应的两部分,
并根据异质变量是否相同将样本分为不同的亚组。 然而,现有的基于回归的亚组分析方法大

多有两大局限性:第一,它们仍然认为亚组内的样本是同质的,没有充分考虑个体效应;第二,
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没有考虑到同质变量中常见污染现象,这将导致模型结果出现较大偏差。 为应对这些挑战,提
出一种稳健的个体化亚组分析方法。 使用多向分离惩罚函数估计模型异质部分的个体化效

应,并使用 γ 散度得到同质部分的稳健估计。 还提出一种高效的交替迭代的两步算法,这一方

法结合了坐标下降法和交替方向乘子法。 数值模拟和对皮肤黑色素瘤数据的分析进一步验证

了所提方法的有效性。
 

关键词　 亚组分析;多向分离惩罚;稳健回归;变量选择

　 　 In
 

recent
 

years,
 

there
 

has
 

been
 

a
 

growing
 

demand
 

to
 

explore
 

individualized
 

models,
 

which
 

have
 

a
 

wide
 

range
 

of
 

applications
 

for
 

personalized
 

medicine,
 

personalized
 

education
 

and
 

personalized
 

marketing.
 

In
 

the
 

era
 

of
 

big
 

data,
 

heterogeneous
 

data
 

is
 

one
 

of
 

the
 

key
 

challenges
 

in
 

data
 

analytics,
 

which
 

is
 

to
 

correctly
 

identify
 

subgroups
 

from
 

a
 

heterogeneous
 

population
 

in
 

order
 

to
 

target
 

treatment
 

or
 

marketing
 

for
 

each
 

subgroup.
 

For
 

example,
 

in
 

the
 

fight
 

against
 

diseases
 

such
 

as
 

cancer,
 

the
 

effectiveness
 

of
 

a
 

new
 

medicine
 

to
 

treat
 

a
 

disease
 

is
 

evaluated
 

for
 

the
 

whole
 

population.
 

However,
 

if
 

there
 

is
 

significant
 

heterogeneity
 

in
 

treatment
 

effects
 

due
 

to
 

genetic
 

variation
 

or
 

environmental
 

influences,
 

then
 

new
 

treatments
 

are
 

likely
 

to
 

be
 

particularly
 

effective
 

for
 

some
 

patient
 

subgroups
 

and
 

ineffective
 

or
 

less
 

effective
 

for
 

others.
 

Therefore,
 

subgroups
 

of
 

patients
 

with
 

desired
 

outcomes
 

need
 

to
 

be
 

identified
 

based
 

on
 

appropriate
 

statistical
 

methods.
 

In
 

order
 

to
 

solve
 

this
 

problem,
 

we
 

need
 

to
 

identify
 

potential
 

subgroup
 

structures.
 

In
 

general,
 

subgroup
 

identification
 

can
 

be
 

achieved
 

by
 

clustering
 

samples.
 

To
 

group
 

different
 

individuals,
 

Hocking
 

et
 

al. [1]
 

and
 

Lindsten
 

et
 

al. [2]
 

used
 

Lp
 fused

 

penalties,
 

treating
 

clustering
 

as
 

a
 

problem
 

of
 

penalized
 

regression.
 

Pan
 

et
 

al. [3]
 

and
 

Ma
 

and
 

Huang[4]
 

used
 

a
 

non-convex
 

fused
 

penalty
 

to
 

reduce
 

bias.
 

However,
 

the
 

fused
 

penalty
 

approach
 

focuses
 

on
 

subgroups
 

rather
 

than
 

model
 

selection
 

of
 

individual
 

coefficients.
 

In
 

other
 

words,
 

although
 

existing
 

subgroup
 

analysis
 

methods
 

have
 

explored
 

possible
 

heterogeneous
 

effects
 

across
 

samples,
 

they
 

have
 

not
 

adequately
 

considered
 

individual
 

effects.
 

For
 

example,
 

in
 

genetic
 

studies
 

to
 

identify
 

biomarkers
 

associated
 

with
 

a
 

particular
 

disease,
 

a
 

gene
 

may
 

be
 

a
 

relevant
 

biomarker
 

for
 

one
 

individual
 

in
 

the
 

population
 

but
 

not
 

for
 

other
 

individuals.
 

Furthermore,
 

for
 

different
 

genes,
 

the
 

effects
 

on
 

heterogeneous
 

covariates
 

may
 

vary
 

between
 

individuals.
 

Therefore,
 

individualized
 

variable
 

selection
 

is
 

important,
 

as
 

different
 

individuals
 

may
 

have
 

different
 

sets
 

of
 

biomarker
 

genes.
 

In
 

addition,
 

the
 

rise
 

of
 

precision
 

medicine
 

and
 

personalized
 

marketing
 

strategies
 

has
 

driven
 

us
 

to
 

develop
 

more
 

effective
 

personalized
 

treatments
 

and
 

recommendations
 

by
 

selecting
 

unique
 

characteristics
 

for
 

each
 

individual.
 

The
 

rich
 

collection
 

of
 

data
 

information
 

makes
 

the
 

use
 

of
 

individualized
 

models
 

feasible
 

and
 

convincing,
 

as
 

traditional
 

aggregate
 

models
 

cannot
 

incorporate
 

heterogeneous
 

effects
 

across
 

individuals.
 

Tang
 

et
 

al. [5]
 

proposed
 

an
 

effective
 

method
 

for
 

individualized
 

model
 

selection
 

using
 

a
 

multidirectional
 

separation
 

penalty
 

function
 

to
 

select
 

significant
 

covariates
 

for
 

different
 

individuals
 

and
 

to
 

simultaneously
 

identify
 

subgroups
 

based
 

on
 

the
 

effects
 

of
 

heterogeneous
 

covariates.
 

Although
 

the
 

individualized
 

model
 

proposed
 

by
 

Tang
 

et
 

al. [5]
 

can
 

realize
 

the
 

feature
 

selection
 

of
 

individuals
 

and
 

the
 

subgroup
 

division
 

of
 

heterogeneous
 

covariates,
 

it
 

is
 

only
 

for
 

ideal
 

data.
 

However,
 

in
 

the
 

real
 

data,
 

especially
 

in
 

the
 

data
 

of
 

genes
 

and
 

diseases,
 

there
 

are
 

often
 

more
 

complex
 

situations.
 

For
 

example,
 

in
 

The
 

Cancer
 

Genome
 

Atlas
 

( TCGA )
 

collection
 

data
 

on
 

skin
 

cucumber
 

melanoma
 

(SKCM)
 

data,
 

studies
 

have
 

shown
 

that[6]
 

the
 

environmental
 

variables
 

are
 

heterogeneous,
 

important
 

to
 

some
 

samples
 

and
 

not
 

important
 

to
 

some
 

samples.
 

And
 

the
 

remaining
 

high-dimensional
 

gene
 

expression
 

variables
 

are
 

homogeneous,
 

and
 

some
 

homogeneous
 

variables
 

are
 

completely
 

unimportant,
 

so
 

variable
 

selection
 

is
 

needed.
 

In
 

addition,
 

due
 

to
 

some
 

technical
 

reasons,
 

there
 

are
 

often
 

some
 

measurement
 

errors
 

in
 

gene
 

expression
 

data,
 

resulting
 

in
 

long-tailed
 

distributions
 

or
 

contamination.
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Therefore,
 

robust
 

methods
 

need
 

to
 

be
 

used
 

to
 

process
 

this
 

part
 

of
 

data.
 

The
 

method
 

of
 

individualized
 

model[5]
 

can
 

not
 

select
 

homogeneous
 

variables,
 

and
 

it
 

is
 

not
 

suitable
 

for
 

dealing
 

with
 

contaminated
 

data.
 

Outliers
 

in
 

data
 

are
 

often
 

encountered
 

with
 

biomedicine,
 

image
 

processing
 

and
 

other
 

areas.
 

However,
 

traditional
 

linear
 

models
 

require
 

assumptions
 

and
 

expectations
 

of
 

the
 

correct
 

variables.
 

The
 

data
 

may
 

be
 

contaminated
 

due
 

to
 

inadequate
 

access
 

to
 

information,
 

errors
 

in
 

subjective
 

judgement
 

and
 

measurement
 

errors,
 

which
 

will
 

lead
 

to
 

bias
 

in
 

the
 

estimates
 

derived
 

from
 

traditional
 

linear
 

models.
 

Robust
 

estimation
 

methods
 

have
 

thus
 

been
 

developed
 

to
 

reduce
 

the
 

impact
 

of
 

outliers
 

on
 

data
 

analysis.
 

The
 

initially
 

used
 

is
 

the
 

least
 

absolute
 

deviation
 

(LAD),
 

but
 

the
 

calculation
 

is
 

more
 

complex.
 

In
 

recent
 

years,
 

the
 

divergence-
based

 

methods
 

have
 

been
 

developed.
 

Two
 

of
 

the
 

more
 

common
 

methods
 

are
 

density
 

power
 

divergence
 

and
 

γ-divergence.
 

The
 

MDPD
 

( minimum
 

density
 

power
 

divergence )
 

method
 

was
 

first
 

proposed
 

by
 

Basu
 

et
 

al. [7] ,
 

it
 

is
 

mainly
 

used
 

to
 

solve
 

the
 

problem
 

of
 

parameter
 

estimation
 

for
 

density
 

distributions.
 

Many
 

statistical
 

models
 

constructed
 

on
 

the
 

basis
 

of
 

density
 

power
 

divergence
 

have
 

been
 

shown
 

in
 

the
 

literature
 

to
 

exhibit
 

excellent
 

robustness.
 

Fujisawa
 

and
 

Eguchi[8]
 

proposed
 

a
 

robust
 

parameter
 

estimation
 

method
 

for
 

Gaussian
 

mixture
 

models
 

based
 

on
 

density
 

power
 

divergence;
 

Ghosh
 

and
 

Basu[9]
 

and
 

Durio
 

and
 

Isaia[10]
 

have
 

extended
 

the
 

method
 

to
 

regression
 

problems
 

and
 

have
 

shown
 

good
 

robustness;
 

Zang
 

et
 

al. [11]
 

proposed
 

a
 

high-dimensional
 

robust
 

parameter
 

estimation
 

method
 

based
 

on
 

density
 

power
 

divergence
 

and
 

applied
 

it
 

to
 

a
 

high-dimensional
 

linear
 

regression
 

model
 

with
 

multiple
 

response
 

variables.
 

The
 

MDPD
 

method
 

is
 

more
 

robust
 

than
 

the
 

LAD
 

method
 

and
 

can
 

deal
 

well
 

with
 

data
 

contamination
 

and
 

heavy-tailed
 

distribution
 

of
 

residuals.
 

Jones
 

et
 

al. [12]
 

first
 

proposed
 

the
 

γ-
divergence

 

method
 

for
 

robust
 

estimation
 

of
 

parameters
 

from
 

a
 

single
 

distribution.
 

It
 

was
 

later
 

extended
 

to
 

robust
 

regression
 

methods
 

for
 

low-
dimensional

 

data
 

by
 

Fujisawa
 

and
 

Eguchi[13] ,
 

so
 

that
 

the
 

estimates
 

obtained
 

have
 

strong
 

robustness,
 

and
 

the
 

potential
 

bias
 

can
 

be
 

sufficiently
 

small
 

even
 

in
 

the
 

case
 

of
 

heavy
 

contamination.
 

None
 

of
 

the
 

other
 

robust
 

methods
 

can
 

achieve
 

these
 

properties,
 

and
 

the
 

estimates
 

are
 

affected
 

by
 

the
 

proportion
 

of
 

contaminated
 

data.
 

It
 

has
 

been
 

shown
 

that
 

the
 

estimation
 

has
 

good
 

statistical
 

and
 

numerical
 

advantages.
 

Kawashima
 

and
 

Fujisawa[14]
 

proposed
 

a
 

robust
 

sparse
 

regression
 

based
 

on
 

γ-divergence
 

to
 

establish
 

robust
 

properties
 

from
 

Pythagorean
 

relations.
 

Hung
 

et
 

al. [15]
 

proposed
 

γ-logistic
 

regression.
 

As
 

γ-logistic
 

regression
 

can
 

ignore
 

the
 

bias
 

caused
 

by
 

the
 

contamination
 

distribution
 

and
 

the
 

proportion
 

of
 

contamination,
 

the
 

probability
 

of
 

the
 

wrong
 

category
 

in
 

the
 

model
 

does
 

not
 

need
 

to
 

be
 

modelled.
 

The
 

MDPD
 

logistic
 

regression
 

was
 

also
 

compared
 

with
 

the
 

γ-logistic
 

regression,
 

showing
 

that
 

the
 

γ-logistic
 

regression
 

has
 

stronger
 

robustness.
 

Ren
 

et
 

al. [16]
 

used
 

γ-divergence
 

on
 

a
 

high-
dimensional

 

generalized
 

linear
 

model
 

to
 

deal
 

with
 

multiple
 

types
 

of
 

anomalous
 

responses
 

and
 

rigorously
 

established
 

consistency
 

in
 

variable
 

selection
 

and
 

estimation
 

bounds.
 

However,
 

γ-divergence
 

has
 

not
 

been
 

used
 

for
 

individualized
 

subgroup
 

analysis.
 

The
 

main
 

contribution
 

of
 

this
 

paper
 

is
 

as
 

follows.
 

First,
 

we
 

propose
 

a
 

robust
 

regression-based
 

individualized
 

subgroup
 

analysis
 

method.
 

Specifically,
 

a
 

multidirectional
 

separation
 

penalty
 

is
 

introduced
 

to
 

analyze
 

heterogeneous
 

individualized
 

effects,
 

and
 

γ-
divergence

 

and
 

regularization
 

techniques
 

are
 

introduced
 

to
 

simultaneously
 

achieve
 

variable
 

selection
 

and
 

robust
 

analysis
 

of
 

homogeneous
 

effects
 

with
 

possible
 

contamination
 

data.
 

Second,
 

an
 

effective
 

twostep
 

algorithm
 

with
 

stepwise
 

alternating
 

iterations,
 

combining
 

coordinate
 

descent
 

and
 

ADMM
 

techniques,
 

is
 

proposed
 

to
 

address
 

the
 

difficulties
 

of
 

objective
 

function
 

optimization.
 

Numerical
 

simulations
 

demonstrate
 

the
 

effectiveness
 

of
 

this
 

algorithm.
 

Third,
 

the
 

real
 

data
 

for
 

skin
 

cutaneous
 

melanoma
 

( SKCM )
 

effectively
 

explores
 

the
 

individualized
 

heterogeneous
 

effects
 

of
 

this
 

disease
 

and
 

provides
 

a
 

practical
 

analytical
 

framework
 

for
 

the
 

analysis
 

of
 

such
 

complex
 

diseases.
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1　 Methodology
 

1. 1　 Model
 

settings
　 　 We

 

formulate
 

the
 

problem
 

under
 

the
 

heterogeneous
 

regression
 

model.
 

For
 

the
 

ith
 

individual,
 

yi
 is

 

a
 

response
 

variable, Xi = (xi1,…,
xip) T

 

is
 

a
 

p-dimensional
 

vector
 

of
 

predictors
 

with
 

heterogeneous
 

effects,
 

and
 

Z i = ( zi1,…,ziq) T
 

is
 

a
 

q-
dimensional

 

vector
 

of
 

homogengous
 

effects.
 

The
 

model
 

is
 

denoted
 

as
yi = XT

i β i + ZT
i α + εi,

 

i = 1,…,n, (1)
where

 

each
 

individual
 

has
 

a
 

unique
 

heterogeneous
 

effect
 

β i = (βi1,…,βip) T
 

related
 

to
 

some
 

certain
 

variables
 

Xi ,
 

and
 

β = (β 1,…,β n) .
 

The
 

homogeneous
 

effect
 

α = (α1,…,αq) T
 

is
 

related
 

to
 

Z i .
 

The
 

random
 

errors
 

εi
 are

 

independent
 

and
 

E(εi) = 0,Var(εi) < ∞ .
The

 

heterogeneous
 

linear
 

model
 

( 1 )
 

can
 

be
 

decomposed
 

into
y(1)
i = XT

i β i + ε(1)
i ,

y(2)
i = ZT

i α + ε(2)
i ,

yi = y(1)
i + y(2)

i ,

E(ε(1)
i ) = 0,Var(ε(1)

i ) < ∞ ,

E(ε(2)
i ) = 0,Var(ε(2)

i ) < ∞ .

ì

î

í

ï
ï
ï
ï

ï
ï
ïï

(2)

We
 

can
 

see
 

that
 

the
 

decomposition
 

of
 

this
 

model
 

(2)
 

combines
 

the
 

existing
 

subgroup
 

analysis
 

heterogeneous
 

model
 

and
 

the
 

classical
 

homogeneous
 

linear
 

model.
1. 2 　 Robust

 

individual
 

estimation
 

based
 

on
 

γ-divergence
　 　 We

 

propose
 

a
 

robust
 

individualized
 

subgroup
 

analysis
 

method
 

based
 

on
 

γ-divergence,
 

which
 

can
 

deal
 

with
 

the
 

linear
 

model
 

with
 

contamination
 

in
 

the
 

homogeneous
 

part
 

and
 

has
 

a
 

individual
 

penalty
 

in
 

the
 

heterogeneous
 

part.
 

According
 

to
 

(2),
 

our
 

objective
 

function
 

is
Q(α,β,τ) = L1(β) + S(β,τ) + L2(α) + P(α).

 

(3)
　 　 The

 

first
 

term
 

L1(β)
 

is
 

the
 

square
 

loss
 

function,
 

L1(β) = 1
2 ∑

n

i = 1
(y(1)

i - XT
i β i) T(y(1)

i - XT
i β i) . (4)

The
 

second
 

term
 

S(β,τ)
 

is
 

the
 

multidirectional
 

separation
 

penalty
 

( MDSP ).
 

The
 

MDSP
 

was
 

first
 

proposed
 

by
 

Tang
 

et
 

al. [5] .
 

We
 

use
 

the
 

MDSP
 

to
 

get
 

the
 

heterogeneity
 

estimate β̂ .
 

We
 

consider
 

different
 

subgrouping
 

with
 

respect
 

to
 

different
 

heterogeneous
 

predictors.
 

We
 

assume
 

that
 

every
 

heterogeneous
 

variable
 

Xi
 has

 

Bk
 subgroups,

βik =
τ( l)
k , if i ∈ g( l)

k ,　 l = 1,…,Bk - 1,

0,　 if i ∈ g(0)
k ,{ (5)

　 　 　 for
 

i= 1,…,n,
where

 

τ( l)
k ( l = 1,…,Bk - 1)

 

is
 

unknow
 

nonzero
 

sub-
homogeneous

 

effect
 

shared
 

by
 

individuals
 

with
 

lth
 

subgroup,
 

and
 

each
 

potential
 

subgroup
 

is
 

represented
 

by
 

the
 

index
 

partition
 

set
 

{g( l)
k } l = 0,1,…,Bk-1

 heterogeneous
 

covariate
 

as
 

an
 

example:
 

one
 

is
 

a
 

subgroup
 

of
 

zero
 

effect (βik = 0,
i ∈ gk) and

 

the
 

other
 

is
 

a
 

subgroup
 

of
 

non-zero
 

effect (βik = τk, i ∈ gc
k) .

 

And
 

the
 

multidirectional
 

separation
 

(MDSP)
 

function
 

S(τ,β)
 

is
 

defined
 

as

S(β,τ) = ∑
n

i = 1
∑

p

k = 1
sλ2

(βik,τk), (6)

sλ2
(βik,τk) = λ2min(| βik | , | βik - τk | ), (7)

where
 

λ2
 is

 

a
 

tuning
 

parameter
 

for
 

individual
 

penalty.
 

Given
 

τk ,
 

the
 

MDSP
 

function
 

provides
 

βik

 another
 

shrinking
 

direction
 

τk
 except

 

0
 

,
 

which
 

can
 

reduce
 

the
 

bias
 

and
 

reduce
 

the
 

sparsity
 

of
 

weak
 

signals.
 

The
 

MDSP
 

term
 ∑

n

i = 1
sλ2

(βik,τk)
 

is
 

a
 

center-

based
 

clustering.
 

The
 

center
 

τk
 of

 

the
 

subgroup
 

and
 

the
 

subgroup
 

members
 

obtained
 

from
 

each
 

contraction
 

direction
 

are
 

iteratively
 

updated.
 

This
 

allows
 

each
 

individual
 

to
 

shrink
 

in
 

the
 

best
 

direction,
 

thus
 

improving
 

the
 

individual
 

model
 

fit,
 

while
 

further
 

adaptively
 

estimating
 

τ̂
 

to
 

obtain
 

subgroups
 

of
 

individuals.
 

More
 

specific
 

details
 

about
 

MDSP
 

can
 

be
 

found
 

in
 

Tang
 

et
 

al. [5] .
 

The
 

third
 

term
 

L2(α)
 

is
 

the
 

γ-divergence
 

loss
 

function.
 

According
 

to
 

the
 

existing
 

literature[13]
 

that
 

uses
 

γ-divergence
 

to
 

deal
 

with
 

linear
 

regression,
 

they
 

argue
 

that
 

the
 

response
 

variable
 

y
 

will
 

deviate
 

partially
 

from
 

the
 

normal
 

distribution
 

due
 

to
 

the
 

y
 

presence
 

of
 

outliers.
 

And
 

by
 

adjusting
 

the
 

appropriate
 

γ
 

values,
 

robust
 

estimates
 

can
 

be
 

obtained
 

with
 

deviating
 

from
 

the
 

normal
 

distribution.
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Therefore,
 

we
 

adopted
 

one
 

of
 

the
 

same
 

settings
 

and
 

practices
 

as
 

theirs.
 

According
 

to
 

the
 

second
 

equation
 

of
 

model
 

(2),
 

we
 

can
 

get
 

conditional
 

probability
 

of
 

y(2)
i

f(y(2)
i | Z i;α) = 1

2πσ
exp -

(y(2)
i - ZT

i α) 2

2σ2{ } .

(8)
We

 

use
 

γ-divergence
 

to
 

deal
 

with
 

contamination
 

in
 

homogenerous
 

variables.
 

For
 

two
 

density
 

functions
 

fθ(x)
 

and
 

g(x) ,
 

the
 

γ-divergence
 

is
 

defined
 

as

Dγ(g(x),fθ(x)) = 1
γ(γ + 1)

‖g(x)‖γ - ∫ fθ(x)
‖fθ(x)‖γ+1

( )
γ

g(x)dx{ } ,γ > 0,

(9)
where

 

fθ  is
 

the
 

model
 

distribution
 

under
 

p
 

dimensional
 

parameter
 

θ,g
 

is
 

the
 

distribution
 

of
 

data
 

generation,
 

and ‖g(x)‖γ = ( ∫g(x) γdx)
1
γ ,‖fθ(x)‖γ+1 =

(∫fθ γ+1(x)dx)
1

γ+1 .
 

And
 

the
 

parameter
 

γ
 

balances
 

robustness
 

and
 

efficiency,
 

which
 

means
 

a
 

bigger
 

γ
 

corresponding
 

to
 

more
 

robust
 

but
 

less
 

efficient
 

estimation.
 

Noted
 

that
 

as
 

γ → 0,Dγ(g,fθ)
 

is
 

a
 

version
 

of
 

the
 

Kullback-Leibler
 

divergence
 

in
 

the
 

limiting
 

case.
Neglecting

 

the
 

terms
 

independent
 

of
 

the
 

unknown
 

parameters,
 

the
 

empirical
 

version[13]
 

of
 

the
 

γ-divergence
 

loss
 

function
 

is
 

obtained
 

by

L2(α) = - 1
n ∑

n

i = 1

f(y(2)
i | Zi;α)γ

(∫f(y(2) | Zi;α)(1+γ) dy(2) )γ/ (1+γ)
,

(10)
where

 

f(y(2)
i | Z i;αi)

 

is
 

the
 

conditional
 

probability
 

of
 

yi
 giving

 

Z i .
 

Following
 

Fujisawa
 

and
 

Eguchi[13] ,
 

then
 

we
 

can
 

get
 

the
 

γ-loss
 

function

L2(α)= - 1
n

1 + γ
2πσ2( )

γ
2(1+γ)

∑
n

i =1
exp - γ

2σ2(y
(2)
i - ZT

i α)2( ) .

(11)
The

 

last
 

term
 

is
 

the
 

Lasso
 

penalty
 

to
 

select
 

variables,
 

P(α) = λ1∑
q

j = 1
| α j | , (12)

where
 

λ1
 is

 

a
 

tuning
 

parameter
 

for
 

Lasso
 

penalty.
 

However,
 

it
 

was
 

found
 

that
 

y(1)
i

 and
 

y(2)
i

 are
 

not
 

recognizable,
 

we
 

can
 

not
 

solve
 

( 3 )
 

directly.
 

Therefore,
 

we
 

design
 

a
 

two-step
 

algorithm
 

that
 

can
 

give
 

reasonable
 

solutions,
 

which
 

is
 

described
 

in
 

Section
 

1. 3.
 

More
 

discussion
 

on
 

the
 

identifiability
 

of
 

the
 

objective
 

function
 

and
 

the
 

effectiveness
 

of
 

the
 

algorithm
 

is
 

shown
 

in
 

the
 

final
 

remark
 

of
 

Section
 

1. 3. 1.
Regarding

 

the
 

theoretical
 

properties
 

of
 

parameter
 

estimation,
 

there
 

is
 

really
 

no
 

discussion
 

of
 

related
 

issues
 

in
 

this
 

article,
 

and
 

this
 

theoretical
 

nature
 

of
 

parameter
 

estimation
 

presented
 

in
 

this
 

article
 

is
 

indeed
 

a
 

great
 

challenge.
 

Based
 

on
 

the
 

theoretical
 

properties
 

of
 

the
 

estimates
 

obtained
 

by
 

γ-
divergence,

 

Fujisawa
 

and
 

Eguchi[13]
 

proved
 

in
 

detail
 

the
 

theoretical
 

properties
 

of
 

the
 

estimates
 

obtained
 

by
 

linear
 

regression
 

based
 

on
 

γ-divergence;
 

Hung
 

et
 

al. [15]
 

applied
 

γ-divergence
 

to
 

logistic
 

regression
 

and
 

proved
 

the
 

consistency
 

and
 

robustness
 

of
 

the
 

obtained
 

estimates;
 

Ren
 

et
 

al. [16]
 

further
 

applied
 

γ-
divergence

 

to
 

high-dimensional
 

generalized
 

linear
 

regression
 

and
 

gives
 

the
 

theoretical
 

properties
 

of
 

the
 

estimates.
 

Regarding
 

the
 

MDSP
 

penalty
 

term,
 

it
 

was
 

first
 

proposed
 

by
 

Tang
 

et
 

al. [5]
 

to
 

apply
 

MDSP
 

to
 

heterogeneous
 

linear
 

models
 

to
 

achieve
 

individualized
 

variable
 

selection,
 

they
 

use
 

a
 

weighted
 

least
 

squares
 

loss
 

function
 

and
 

prove
 

the
 

large
 

sample
 

theoretical
 

properties
 

of
 

the
 

estimation.
 

We
 

proposed
 

a
 

robust
 

individualized
 

subgroup
 

analysis
 

method
 

based
 

on
 

the
 

above,
 

and
 

the
 

theoretical
 

properties
 

of
 

this
 

estimation
 

will
 

be
 

the
 

subject
 

of
 

further
 

research
 

in
 

the
 

future.
1. 3　 Computation

 

1. 3. 1　 Overall
 

two-step
 

algorithm
 

　 　 To
 

solve
 

the
 

problem
 

that
 

y(1)
i

 and
 

y(2)
i

 are
 

not
 

recognizable,
 

we
 

proposed
 

a
 

two-step
 

method.
 

Our
 

idea
 

is
 

to
 

divide
 

the
 

solution
 

of
 

the
 

model
 

(2)
 

into
 

two
 

parts,
 

iterating
 

alternately.
 

First,
 

the
 

initial
 

value
 

of
 

the
 

coefficient
 

α(0) ,β (0)
 is

 

obtained
 

by
 

the
 

method
 

in
 

Tang
 

et
 

al. [5] .
 

Next,
 

the
 

two
 

parts
 

of
 

the
 

model
 

are
 

solved
 

alternately.
 

In
 

the
 

first
 

part,
 

we
 

think
 

of
 

β
 

as
 

a
 

known,
 

then
 

we
 

obtain
 

a
 

general
 

linear
 

model,
 

which
 

only
 

contains
 

homogeneous
 

coefficients
 

α.
 

So
 

the
 

objective
 

function
 

in
 

this
 

step
 

is
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Q(α) = L2(α) + P(α), (13)
where

 

L2(α)
 

is
 

defined
 

by
 

(11),
 

P(α)
 

is
 

defined
 

by
 

(12).
 

Then
 

we
 

get
 

the
 

estimation
 

α̂
 

by
 

solving
 

the
 

γ-divergence
 

loss
 

function
 

with
 

Lasso
 

penalty.
 

The
 

optimization
 

algorithm
 

is
 

described
 

in
 

Section
 

1. 3. 2.
 

In
 

the
 

second
 

part,
 

we
 

fix
 

α ,
 

then
 

we
 

get
 

heterogeneity
 

estimation
 

β̂
 

by
 

the
 

following
 

objective
 

function
 

Q(β,τ) = L1(β) + S(β,τ), (14)
where

 

L1(β)
 

is
 

defined
 

by
 

( 4),
 

and
 

S(β,τ)
 

is
 

MDSP.
 

The
 

two
 

parts
 

iterate
 

alternately
 

until
 

convergence.
 

The
 

optimization
 

algorithm
 

is
 

described
 

in
 

Section
 

1. 3. 3.
 

The
 

detailed
 

procedure
 

is
 

described
 

as
 

follows.
 

Initialize:
 

Based
 

on
 

ADMM
 

algorithm
 

in
 

Tang
 

et
 

al. [5] ,
 

the
 

initial
 

values
 

of
 

homogeneous
 

coefficient
 

α(0)
 and

 

heterogeneous
 

coefficient
 

β (0)
 are

 

solved.
 

Step
 

1:
 

We
 

get
 

the
 

value
 

of
 

α( l)
 from

 

the
 

previous
 

step,
 

the
 

coefficients
 

of
 

homogeneous
 

covariates
 

α( l) are
 

reestimated
 

based
 

on
 

γ-
divergence.

 

We
 

reestimate
 

the
 

coefficients
 

of
 

homogeneous
 

covariates
 

α( l +1)
 by

 

solving
 

(13).
 

Step
 

2:
 

We
 

get
 

the
 

value
 

of
 

β ( l)
 from

 

the
 

previous
 

step,
 

solve
 

the
 

objective
 

function
 

with
 

multidirectional
 

separation
 

penalty,
 

and
 

reestimate
 

the
 

coefficient
 

of
 

heterogeneous
 

covariate
 

β ( l +1)
 by

 

solving
 

( 14 ).
 

Thus,
 

the
 

step
 

1
 

and
 

step
 

2
 

are
 

repeated
 

until
 

convergence.
 

Remark
 

1:
 

We
 

acknowledge
 

that
 

there
 

is
 

a
 

recognizability
 

problem
 

in
 

the
 

design
 

of
 

the
 

underlying
 

true
 

model,
 

and
 

there
 

is
 

indeed
 

a
 

gap
 

between
 

the
 

objective
 

function
 

and
 

the
 

current
 

algorithm,
 

and
 

the
 

solution
 

optimized
 

by
 

the
 

algorithm
 

may
 

not
 

correspond
 

exactly
 

to
 

the
 

objective
 

function,
 

but
 

the
 

result
 

obtained
 

by
 

the
 

algorithm
 

is
 

also
 

a
 

reasonable
 

solution
 

with
 

good
 

numerical
 

results.
 

It
 

is
 

the
 

direction
 

of
 

our
 

future
 

exploration
 

to
 

explore
 

the
 

problem
 

of
 

recognizability
 

of
 

the
 

underlying
 

true
 

model
 

in
 

depth.
Remark

 

2:
 

To
 

eliminate
 

the
 

problem
 

of
 

recognizability
 

of
 

the
 

current
 

model,
 

another
 

possible
 

model
 

is

Q(α,β) = - 1
n ∑

n

i = 1

f(yi | Zi,Xi;α,β)γ

(∫f(y | Zi,Xi;α,β)(1+γ) dy)
γ

(1+γ)

+

λ ∑
q

j = 1
| α j | + ∑

p

i = 1
| βi |( ) . (15)

　 　 This
 

objective
 

function
 

(15)
 

can
 

be
 

solved
 

by
 

the
 

classical
 

coordinate
 

descent
 

method,
 

which
 

is
 

omitted
 

here.
 

This
 

scheme
 

we
 

also
 

tried,
 

and
 

the
 

numerical
 

results
 

are
 

not
 

good.
 

The
 

numerical
 

results
 

show
 

that
 

both
 

the
 

estimation
 

of
 

the
 

homogeneous
 

coefficient
 

α
 

and
 

the
 

heterogeneous
 

coefficient
 

β
 

have
 

poorer
 

results
 

compared
 

to
 

our
 

proposed
 

method.
 

And
 

the
 

MSE
 

of
 

the
 

estimated
 

homogeneity
 

coefficients
 

α
 

for
 

our
 

proposed
 

method
 

is
 

significantly
 

lower
 

than
 

the
 

model
 

( 15 ).
 

The
 

lower
 

value
 

of
 

RI
 

obtained
 

by
 

the
 

model
 

( 15 )
 

suggests
 

that
 

the
 

direct
 

use
 

of
 

γ-divergence
 

to
 

the
 

whole
 

y
 

may
 

be
 

less
 

suitable
 

in
 

the
 

presence
 

of
 

individual
 

effects.
 

Our
 

intuitive
 

interpretation
 

is
 

that
 

if
 

the
 

γ-divergence
 

is
 

added
 

directly
 

to
 

the
 

whole
 

y ,
 

because
 

the
 

whole
 

y
 

contains
 

a
 

portion
 

of
 

individual
 

effects,
 

that
 

portion
 

is
 

not
 

normally
 

distributed
 

at
 

all,
 

and
 

such
 

the
 

y
 

will
 

cause
 

the
 

robustness
 

of
 

the
 

γ-divergence
 

to
 

fail
 

completely.
 

On
 

the
 

other
 

hand,
 

we
 

may
 

regard
 

the
 

heterogeneous
 

data
 

as
 

outliers,
 

we
 

can
 

not
 

judge
 

whether
 

the
 

data
 

is
 

contaminated
 

or
 

caused
 

by
 

heterogeneous
 

variables.
 

So
 

we
 

use
 

γ-
divergence

 

loss
 

function
 

in
 

the
 

homogeneous
 

part
 

to
 

greatly
 

reduce
 

the
 

not
 

robust
 

results
 

caused
 

by
 

homogeneous
 

data
 

contamination,
 

and
 

use
 

MDSP
 

in
 

the
 

heterogeneous
 

part
 

to
 

realize
 

the
 

individualized
 

selection
 

of
 

heterogeneous
 

covariates.
1. 3. 2　 CD

 

algorithm
 

　 　 To
 

minimize
 

the
 

( 13 ),
 

we
 

use
 

coordinate
 

descent
 

algorithm
 

to
 

solve
 

this
 

problem.
 

According
 

to
 

(11),
 

the
 

derivative
 

of
 

Q(α)
 

to
 

α j
 is

Δ

αj
Q = ∂Q(α)

∂α j

= - 1
n

1 + γ
2πσ2( )

γ
2(1+γ) γ

σ2∑
n

i = 1
(y(2)

i - ZT
i α) zij

　 exp - γ
2σ2 (y(2)

i - ZT
i α) 2( ) + λ1sgn(α j),

(16)
then

 

we
 

let
 

Q(α)
 

derivative
 

of
 

σ2,
 

and
 

we
 

let
 

it
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equals
 

0
 

􀆟Q(α)
􀆟σ2

= - 1
n

1 + γ
2πσ2( )

γ
2(1+γ) γ

2
1
σ2( )

2

∑
n

i = 1
(y∗

i - ZT
i α) 2 - σ2

1 + γ
é

ë
êê

ù

û
úú

exp - γ
2σ2 (y∗

i - ZT
i α) 2( ) = 0. (17)

With
 

fixed
 

γ
 

and
 

λ1,
 

we
 

calculate
 

the
 

gradient
 

according
 

to
 

(16),
 

select
 

the
 

step
 

length
 

using
 

the
 

armijo
 

criterion,
 

and
 

update
 

α
 

according
 

to
 

the
 

coordinate
 

descent
 

method,
 

then
 

use
 

the
 

bisection
 

method
 

to
 

estimate
 

σ 2 .
1. 3. 3　 ADMM

 

algorithm
 

　 　 In
 

order
 

to
 

optimize
 

the
 

objective
 

function
 

( 14 ),
 

the
 

constraint
 

set
 

is
 

introduced
 

and
 

transformed
 

into
 

solving
 

the
 

following
 

constrained
 

optimization
 

problem
min
β,ν,τ

Lγ(β) + Sλ2
(β,τ)　 s. t. β = ν. (18)

where
 

βnp×1 = (βij)1≤i≤n,1≤j≤p,νnp×1 = (νij)1≤i≤n,1≤j≤p .
The

 

augmented
 

Lagrange
 

multiplier
 

method
 

is
 

used
 

to
 

solve
 

( 18 )
 

by
 

introducing
 

Lagrange
 

multiplier
 

Λ,κ .
min
β,ν,τ

Lγ(β) + Sλn
(β,τ)　 s. t. β = ν. (19)

Lγ(β,ν,τ) = Lγ(β) + Sλn
(β,τ) +

ΛT(β - ν) + κ
2

‖β - ν‖2
2,

(20)

where
 

Λnp×1 = (Λij) 1≤i≤n,1≤j≤p,κ
 

is
 

a
 

fixed
 

number.
 

Then
 

we
 

use
 

ADMM
 

algorithm
 

to
 

solve
 

the
 

following
 

optimization
 

problem:

β( l+1) = argmin
β
Lγ(β) + κ

2
‖β - ν( l) + κ -1Λ( l) ‖2

2,

(21)
ν( l+1) ,τ( l+1){ } = argmin

ν,τ
Sλn

(ν,τ) +

κ
2

‖β( l+1) - ν + κ -1Λ( l) ‖2
2, (22)

Λ( l +1) = Λ( l) + κ(β( l+1) - ν( l +1) ) . (23)
For

 

more
 

details
 

about
 

ADMM
 

algorithm
 

for
 

(14)
 

,
 

please
 

refer
 

to
 

Tang
 

et
 

al. [5] .
 

The
 

overall
 

algorithm
 

in
 

our
 

approach
 

is
 

described
 

in
 

Table
 

1.
　 　 Regarding

 

the
 

algorithm
 

for
 

the
 

solution,
 

we
 

use
 

a
 

two-step
 

iterative
 

method.
 

Given
 

the
 

initial
 

values,
 

the
 

first
 

step
 

uses
 

the
 

alternating
 

direction
 

method
 

of
 

multipliers
 

( ADMM )
 

to
 

solve
 

an

　 　 　 　 　 Table
 

1　 Algorithm
 

1
Algorithm

 

1
Input:

 

Response
 

variable
 

yi ,
 

covariates
 

Xi,Zi .

Output:
 

Estimation
 

of
 

coefficient,
 

β̂,α̂ .
　 Initialization:

 

l = 1,
 

the
 

threshold
 

e = 10 -3 .
　 The

 

initial
 

value
 

α(0) ,β (0)
 are

 

abtained
 

by
 

ADMM
 

algorithm
 

in[5] ;

　 repeat
 

　
 

l = l + 1;
 

　
 

Update
 

α( l+1)
 with

 

CD
 

algorithm
 

via
 

(13)
 

;
 

　
 

Update
 

β ( l+1)
 with

 

ADMM
 

algorithm
 

via
 

(14);
  

until
 

‖β ( l+ 1) - β ( l) ‖2 ≤ e,‖α( l+ 1) - α( l) ‖2 ≤ e .

optimization
 

problem
 

containing
 

the
 

MDSP
 

of
 

the
 

optimization
 

problem.
 

In
 

this
 

step,
 

we
 

use
 

the
 

ADMM
 

algorithm
 

borrowed
 

from
 

the
 

method
 

used
 

by
 

Tang
 

et
 

al. [5]
 

in
 

their
 

solution.
 

Boyd
 

et
 

al. [17]
 

proved
 

that
 

the
 

ADMM
 

algorithm
 

can
 

guarantee
 

the
 

convergence
 

of
 

residuals,
 

objective
 

function,
 

and
 

pairwise
 

variables
 

under
 

the
 

assumption
 

of
 

general.
 

Tang
 

et
 

al. [5]
 

show
 

that
 

ADMM
 

algorithm
 

can
 

converge
 

to
 

a
 

stable
 

point
 

when
 

solving
 

the
 

penalty
 

term
 

with
 

MDSP,
 

and
 

in
 

practice,
 

it
 

can
 

converge
 

to
 

a
 

local
 

minimum
 

by
 

iteration.
 

And
 

most
 

of
 

the
 

individuals
 

are
 

insensitive
 

to
 

the
 

initial
 

values
 

except
 

those
 

near
 

the
 

subgroup
 

boundary.
 

Therefore,
 

using
 

the
 

ADMM
 

algorithm
 

to
 

solve
 

this
 

problem
 

can
 

ensure
 

convergence.
In

 

the
 

second
 

step,
 

we
 

use
 

the
 

coordinate
 

descent
 

method
 

to
 

solve
 

a
 

loss
 

function
 

based
 

on
 

γ-
divergence.

 

We
 

use
 

this
 

algorithm
 

by
 

drawing
 

from
 

existing
 

papers
 

on
 

γ-divergence-based
 

regression[14,16]
 

which
 

use
 

the
 

CD
 

algorithm
 

in
 

solving
 

such
 

problems.
 

The
 

convergence
 

of
 

the
 

algorithm
 

of
 

coordinate
 

descent
 

is
 

a
 

very
 

general
 

framework,
 

for
 

the
 

main
 

term
 

is
 

the
 

likelihood
 

function
 

are
 

applicable,
 

so
 

its
 

convergence
 

can
 

be
 

guaranteed.
 

Both
 

optimization
 

subproblems
 

are
 

convergent,
 

so
 

it
 

is
 

a
 

natural
 

result
 

that
 

the
 

whole
 

algorithm
 

is
 

convergent.
 

For
 

all
 

of
 

our
 

simulated
 

and
 

real
 

data
 

sets,
 

convergence
 

was
 

successfully
 

achieved
 

within
 

50
 

overall
 

iterations
 

( mostly
 

within
 

20
 

iterations).
Regarding

 

the
 

efficiency
 

of
 

the
 

overall
 

two-step
 

method,
 

we
 

performed
 

numerical
 

simulations
 

on
 

a
 

computer
 

configured
 

with
 

an
 

Apple
 

M1
 

( ARM64)
 

chip
 

(total
 

number
 

of
 

cores
 

8,
 

memory
 

16 GB),
 

and
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the
 

time
 

for
 

100
 

repetitions
 

at
 

a
 

given
 

setting
 

was
 

1
 

to
 

2
 

hours,
 

with
 

an
 

average
 

time
 

of
 

less
 

than
 

1
 

minute
 

for
 

one
 

calculation.
 

The
 

complexity
 

of
 

the
 

algorithm
 

is
 

O(n3) ,
 

and
 

the
 

relatively
 

high
 

complexity
 

of
 

the
 

algorithm
 

is
 

due
 

to
 

the
 

high
 

complexity
 

of
 

the
 

ADMM
 

algorithm
 

used
 

in
 

solving
 

the
 

objective
 

function
 

containing
 

the
 

MDSP.
 

However,
 

in
 

general,
 

the
 

time
 

required
 

to
 

solve
 

is
 

shorter
 

and
 

the
 

algorithm
 

is
 

more
 

efficient.
1. 3. 4　 Tuning

 

parameter
 

　 　 In
 

this
 

article,
 

we
 

should
 

tune
 

three
 

parameters
γ,λ1,λ2 .

 

It
 

is
 

worth
 

noting
 

that
 

the
 

first
 

tuning
 

parameter
 

γ
 

balance
 

the
 

estimation
 

efficiency
 

and
 

robustness.
 

However,
 

there
 

is
 

no
 

consistent
 

way
 

to
 

select
 

γ .
 

The
 

second
 

parameter
 

λ1
 is

 

Lasso
 

penalty
 

parameter,
 

and
 

it
 

can
 

continuously
 

shrink
 

coeffients
 

toward
 

zero,
 

which
 

really
 

improves
 

prediction
 

ability
 

via
 

the
 

bias
 

variance
 

trade-off.
 

The
 

last
 

parameter
 

λ2

is
 

MDSP
 

parameter,
 

which
 

control
 

the
 

individual
 

variables
 

selection.
 

Bayes
 

Information
 

Criterion
 

(BIC)
 

criteria
 

are
 

able
 

to
 

identify
 

the
 

true
 

model
 

consistently.
 

Here,
 

we
 

use
 

BIC
 

criteria
 

to
 

select
 

optimal
 

parameters
 

λ1,λ2,γ.
Regarding

 

the
 

parameter
 

γ,
 

according
 

to
 

the
 

definition
 

of
 

γ-divergence,
 

and
 

studies
 

related
 

to
 

γ-
divergence,

 

it
 

is
 

shown
 

that
 

the
 

value
 

of
 

γ
 

balances
 

the
 

robustness
 

of
 

the
 

model.
 

However,
 

regarding
 

the
 

selection
 

of
 

parameter
 

γ,
 

Basu
 

et
 

al. [7]
 

pointed
 

out
 

that
 

there
 

is
 

no
 

consistent
 

best
 

way
 

to
 

choose
 

a
 

suitable
 

parameter
 

γ.
 

Therefore,
 

there
 

are
 

many
 

ways
 

to
 

choose
 

γ.
 

The
 

first
 

method
 

is
 

to
 

use
 

cross-
validation

 

together
 

with
 

other
 

parameters
 

to
 

be
 

optimized
 

to
 

select[18] .
 

The
 

second
 

method
 

does
 

not
 

select
 

the
 

parameters
 

based
 

on
 

the
 

data,
 

but
 

artificially
 

gives
 

the
 

γ
 

value
 

directly[14] .
 

The
 

third
 

approach
 

is
 

to
 

use
 

specified
 

rules
 

( e. g.
 

BIC
 

criterion)
 

for
 

parameter
 

selection
 

together
 

with
 

other
 

parameters
 

that
 

need
 

to
 

be
 

optimized[11,15-16,19] .
 

Since
 

cross-validation
 

is
 

slow
 

and
 

relying
 

on
 

artificially
 

given
 

parameter
 

values
 

without
 

data-based
 

selection
 

is
 

unreliable,
 

we
 

draw
 

on
 

the
 

existing
 

literature[11,16]
 

to
 

use
 

the
 

BIC
 

criterion
 

for
 

parameter
 

γ
 

selection.

2　 Simulation
 

2. 1　 Model
 

for
 

simulation
 

　 　 We
 

used
 

the
 

simulation
 

model
 

given
 

by
 

yi = xi1βi1 + xi2βi2 + ZT
i α + e,

e ~ N(0,1),i = 1,…,n.
We

 

set
 

the
 

sample
 

size
 

n = 180,120,
 

and
 

the
 

number
 

of
 

homogeneous
 

explanatory
 

variables
 

q =
20,40,

 

respectively.
 

The
 

true
 

coefficients
 

were
 

give
 

by
β1 = (θ1,…,θ1,…,θ1,0,…,0),
β2 = (0,…,0,θ2,…,θ2,…,θ2),

α = (θ3,…,θ3,0,…,0) T,
where

 

θ1 = 2,θ2 = - 1,θ3 = 1.
 

The
 

number
 

of
 

nonzero
 

elements
 

θ1
 in

 

β 1
 is

 

the
 

same
 

as
 

the
 

number
 

of
 

θ2
 in

 

β 2,
 

which
 

is
 

2n / 3.
 

And
 

the
 

number
 

of
 

θ3
 is

 

10.
The

 

variables
 

are
 

generated
 

by
 

two
 

ways.
 

Let
 

X = (X1,…,Xn) T,Z = (Z1,…,Zn) T .
 

The
 

first
 

way
 

was
 

heterogeneity
 

explanatory
 

variables
 

X
 

and
 

homogeneous
 

explanatory
 

variables
 

Z
 

are
 

independent.
 

And
 

X
 

are
 

generated
 

from
 

a
 

normal
 

distribution
 

N(0,􀰑1) with 􀰑1 =
1 0. 2

0. 2 1( ) .
 

The
 

homogeneous
 

explanatory
 

variable
 

Z
 

are
 

also
 

generated
 

from
 

a
 

normal
 

distribution
 

N(0,􀰑2) .
 

And
 

we
 

consider
 

two
 

structures
 

of
 

covariance
 

matrix
 

􀰑2 .
 

The
 

first
 

structure
 

is
 

autoregressive
 

correlation
 

(AR),
 

which
 

is
 

given
 

by 􀰑2 = (ρ | i -j| ) 1≤i,j≤p
 with

 

ρ = 0. 2.
 

The
 

banded
 

correlation
 

is
 

the
 

second
 

structure.
 

We
 

consider
 

σ ij = 0. 5,
 

if
 

| i - j | = 1,
 

and
 

0
 

otherwise.
 

The
 

second
 

way
 

to
 

generate
 

variables
 

X
 

and
 

Z
 

are
 

dependent.
 

They
 

are
 

generated
 

from
 

a
 

multivariate
 

normal
 

distribution
 

with
 

mean
 

0
 

and
 

covariance
 

R(ρ) ,
 

where
 

R(ρ)
 

is
 

the
 

correlation
 

matrix
 

with
 

AR
 

structure
 

like
 

􀰑2,
 

and
 

ρ = 0. 2.
Outliers

 

in
 

homogeneous
 

variables
 

were
 

incorporated
 

into
 

simulations.
 

We
 

investigated
 

two
 

outlier
 

ratios
 

( r = 0. 1
 

and
 

0. 3).
 

The
 

outliers
 

are
 

generated
 

from
 

N(μ,c􀰑2) ,
 

where
 

μ = (1,…,
1) T,c = 2.

 

2. 2　 Performance
 

measure
　 　 The

 

mean
 

squared
 

error
 

(MSE)
 

were
 

examined
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to
 

verify
 

the
 

predictive
 

performance
 

and
 

fitness
 

of
 

regression
 

coefficient:

MSE(α) = 1
q ∑

q

j = 1
(α∗

j -α̂ j) 2,

MSE(β) = 1
np∑

n

i = 1
∑

p

j = 1
(β∗

ij -β̂ij) 2,

where (x∗
i ,z∗

i ,y∗
i )( i = 1,2,…,n) is

 

the
 

test
 

sample
 

generated
 

from
 

the
 

simulation
 

model
 

without
 

outliers,
 

β∗
ij

 and
 

α∗
j

 are
 

the
 

true
 

coefficients.
 

The
 

true
 

positive
 

rate
 

( TPR )
 

and
 

true
 

negative
 

rate
 

(TNR)
 

of
 

coefficients
 

were:
 

TPR( α̂) =
j ∈ {1,…,q}:α̂ j ≠ 0 ∧ α∗

j ≠ 0{ }

| { j ∈ {1,…,q}:α∗
j ≠ 0} |

,

TNR( α̂) =
j ∈ {1,…,q}:α̂ j = 0 ∧ α∗

j = 0{ }

| { j ∈ {1,…,q}:α∗
j = 0} |

,

TPR( β̂) =

i ∈ {1,…,n},j ∈ {1,…,p}:β̂ij ≠ 0 ∧ β∗
ij ≠ 0{ }

| {i ∈ {1,…,n},j ∈ {1,…,p}:β∗
ij ≠ 0} |

,

TNR( β̂) =

i ∈ {1,…,n},j ∈ {1,…,p}:β̂ij = 0 ∧ β∗
ij = 0{ }

| {i ∈ {1,…,n},j ∈ {1,…,p}:β∗
ij = 0} |

.

　 　 The
 

rand
 

index
 

( RI )
 

is
 

a
 

measure
 

of
 

the
 

similarity
 

between
 

two
 

data
 

clusterings.
 

It
 

is
 

definated
 

by
 

RI = 1 -
I(M1) - I(M2)

C2
n

,

where
 

function
 

I(M)
 

is
 

the
 

number
 

of
 

upper
 

triangular
 

nonzero
 

elements
 

in
 

matrix
 

M. Ms( s = 1,
2)

 

represents
 

class
 

matrix,
 

its
 

element
 

aij = 1
 

means
 

subject
 

i
 

and
 

j
 

are
 

in
 

the
 

same
 

group,
 

otherwise
 

aij =
0 .

 

If
 

subject
 

i
 

and
 

subject
 

j
 

have
 

completely
 

identical
 

heterogeneity
 

coefficients,
 

we
 

consider
 

they
 

belong
 

to
 

the
 

same
 

class.
 

M1
 is

 

real
 

class
 

matrix,
 

M2
 is

 

estimate
 

class
 

matrix.
2. 3　 Comparative

 

method
　 　 We

 

compare
 

the
 

performance
 

of
 

our
 

proposed
 

method
 

γ-MDSP
 

with
 

five
 

subgrouping
 

based
 

variable
 

selection
 

approaches:
 

1 )
 

the
 

original
 

MDSP
 

method;
 

2 )
 

the
 

pairwise
 

fused
 

Lasso
 

with
 

an
 

Lasso
 

penalty
 

( FLPa ): λ1∑ n

i = 1
‖βi‖1 +

λ2∑ p

k = 1∑ i < j
| βik - β jk | ,

 

was
 

sovled
 

by
 

R
 

package
 

penalized
 

( version
 

0. 9 - 50);
 

3)
 

fusion
 

and
 

feature
 

selection
 

with
 

a
 

truncated
 

Lasso
 

penalty
 

( FTLP ):
 

λ1∑ p

k = 1∑
n

i = 1
Jτ ( | βik | ) +

λ2∑ p

k = 1∑ i < j
Jτ( | βik - β jk | ) ,

 

where
 

Jτ(a) =

min( a
τ

,1) ,
 

was
 

implemented
 

by
 

R
 

package
 

penalized
 

(version
 

0. 9-50).
In

 

addition,
 

we
 

also
 

focus
 

on
 

the
 

following
 

methods
 

about
 

subgrouping
 

and
 

clustering
 

aspect:
 

1)
 

clustering
 

based
 

on
 

response
 

variables
 

with
 

a
 

Lasso
 

penalty
 

(CVL).
 

First
 

we
 

cluster
 

based
 

on
 

the
 

response
 

variables,
 

and
 

then
 

we
 

use
 

Lasso
 

penalty
 

on
 

each
 

cluster
 

to
 

realize
 

variables
 

selection;
 

2 )
 

clustering
 

based
 

on
 

residual
 

with
 

an
 

Lasso
 

penalty
 

( CRL).
 

First,
 

under
 

the
 

homogeneity
 

assumption
 

yi = XT
i β + ZT

i α + εi ,
 

we
 

use
 

Lasso
 

penalty
 

to
 

select
 

variables,
 

then
 

we
 

cluster
 

them
 

based
 

on
 

residuals
 

yi - XT
i β̂ - ZT

i α̂ ,
 

and
 

we
 

also
 

apply
 

Lasso
 

penalty
 

on
 

each
 

cluster.
We

 

also
 

compare
 

the
 

γ - divergence
 

with
 

some
 

other
 

robust
 

loss
 

functions:
 

1 )
 

least
 

absolute
 

deviation
 

( LAD )
 

solved
 

by
 

R
 

package
 

L1pack
 

(version
 

0. 38. 196);
 

2)
 

Huber
 

function
 

solved
 

by
 

R
 

package
 

MASS
 

(version
 

7. 3-55).
Moreover,

 

we
 

used
 

MDSP
 

based
 

on
 

known
 

true
 

data
 

and
 

true
 

important
 

homogeneous
 

variables
 

in
 

the
 

first
 

estimator
 

( Oracle1).
 

In
 

the
 

second
 

estimator
 

(Oracle2),
 

we
 

know
 

true
 

important
 

homogeneous
 

variables
 

and
 

original
 

MDSP
 

method
 

is
 

used.
In

 

our
 

method,
 

we
 

need
 

an
 

initial
 

point
 

to
 

obtain
 

the
 

estimate,
 

and
 

in
 

this
 

experiment,
 

we
 

used
 

the
 

estimate
 

of
 

MDPS
 

as
 

an
 

initial
 

point.
 

The
 

tuning
 

parameter
 

γ ,
 

MDSP
 

penalty
 

λ 1
 and

 

Lasso
 

penalty
 

λ 2
 are

 

selected
 

via
 

line
 

search
 

to
 

minimize
 

Bayesian
 

information
 

criterion.
2. 4　 Results
　 　 Table

 

2
 

is
 

the
 

results
 

that
 

heterogeneous
 

variable
 

X
 

is
 

independent
 

of
 

homogeneous
 

variable
 

Z.
 

Table
 

2
 

shows
 

the
 

results
 

of
 

that
 

X
 

and
 

Z
 

are
 

dependent.
 

In
 

the
 

main
 

text
 

we
 

only
 

show
 

Table
 

2
 

and
 

Table
 

3.
 

And
 

these
 

tables
 

provide
 

the
 

MSE,
 

TPR,
 

and
 

TNR
 

of
 

coefficients
 

α
 

and
 

β ,
 

the
 

last
 

column
 

displays
 

the
 

RI
 

for
 

all
 

methods.
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Table
 

2　 Independent
 

X
 

and
 

Z,
 

q = 20,r = 0. 1

Correlation n Method MSE(α) MSE(β) TPR(α) TPR(β) TNR(α) TNR(β) RI

AR

180

120

γ -MDSP 0. 029(0. 030) 1. 531(0. 692) 1. 000(0. 000) 0. 419(0. 059) 0. 610(0. 189) 0. 637(0. 089) 0. 661(0. 016)

MDSP 0. 463(0. 080) 6. 719(2. 046) 0. 472(0. 129) 0. 470(0. 050) 0. 518(0. 142) 0. 545(0. 055) 0. 643(0. 009)

FLPa 0. 455(0. 349) 2. 073(0. 464) 0. 550(0. 164) 0. 531(0. 028) 0. 510(0. 139) 0. 499(0. 046) 0. 648(0. 005)

FTLP 0. 428(0. 060) 2. 011(0. 174) 0. 508(0. 132) 0. 536(0. 032) 0. 508(0. 138) 0. 504(0. 050) 0. 649(0. 006)

CVL 0. 494(0. 012) 1. 612(0. 090) 0. 050(0. 066) 0. 097(0. 115) 0. 963(0. 052) 0. 909(0. 110) 0. 33(0. 007)

CRL 0. 521(0. 079) 1. 629(0. 649) 0. 089(0. 089) 0. 258(0. 124) 0. 891(0. 094) 0. 750(0. 131) 0. 322(0. 066)

LAD 0. 222(0. 187) 12. 070(3. 258) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 647(0. 000)

Huber 0. 481(0. 162) 11. 787(3. 001) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 647(0. 000)

Oracle1 0. 019(0. 008) 1. 239(0. 127) 1. 000(0. 000) 0. 402(0. 075) 0. 516(0. 125) 1. 000(0. 000) 0. 665(0. 025)

Oracle2 0. 442(0. 092) 14. 604(5. 662) 0. 480(0. 131) 0. 477(0. 047) 0. 504(0. 107) 1. 000(0. 000) 0. 619(0. 016)

γ -MDSP 0. 135(0. 182) 1. 494(0. 443) 0. 983(0. 065) 0. 382(0. 084) 0. 587(0. 172) 0. 662(0. 095) 0. 657(0. 018)

MDSP 1. 278(1. 170) 8. 035(2. 267) 0. 514(0. 090) 0. 474(0. 053) 0. 504(0. 086) 0. 559(0. 067) 0. 642(0. 011)

FLPa 0. 869(0. 587) 3. 241(1. 157) 0. 500(0. 093) 0. 522(0. 031) 0. 533(0. 092) 0. 483(0. 045) 0. 647(0. 007)

FTLP 0. 839(0. 452) 3. 193(0. 995) 0. 488(0. 098) 0. 530(0. 033) 0. 492(0. 090) 0. 491(0. 045) 0. 648(0. 006)

CVL 0. 496(0. 011) 1. 601(0. 091) 0. 038(0. 047) 0. 107(0. 150) 0. 953(0. 059) 0. 893(0. 151) 0. 330(0. 007)

CRL 0. 505(0. 050) 1. 938(2. 418) 0. 077(0. 075) 0. 175(0. 131) 0. 909(0. 078) 0. 831(0. 125) 0. 334(0. 038)

LAD 0. 877(0. 192) 10. 120(2. 909) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 642(0. 000)

Huber 0. 949(0. 208) 10. 143(3. 197) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 642(0. 000)

Oracle1 0. 140(0. 137) 1. 281(0. 154) 0. 986(0. 045) 0. 391(0. 074) 0. 504(0. 070) 1. 000(0. 000) 0. 661(0. 026)

Oracle2 1. 262(0. 996) 19. 692(8. 350) 0. 498(0. 074) 0. 473(0. 052) 0. 508(0. 080) 1. 000(0. 000) 0. 615(0. 016)

Band

180

120

γ -MDSP 0. 027(0. 041) 1. 419(1. 213) 0. 995(0. 022) 0. 402(0. 083) 0. 635(0. 179) 0. 665(0. 064) 0. 664(0. 02)

MDSP 0. 133(0. 056) 3. 360(1. 084) 0. 962(0. 070) 0. 465(0. 054) 0. 718(0. 134) 0. 558(0. 076) 0. 643(0. 015)

FLPa 0. 319(0. 353) 1. 916(0. 583) 0. 870(0. 167) 0. 524(0. 040) 0. 710(0. 149) 0. 500(0. 026) 0. 649(0. 009)

FTLP 0. 141(0. 062) 1. 626(0. 143) 0. 939(0. 096) 0. 546(0. 031) 0. 753(0. 124) 0. 501(0. 051) 0. 654(0. 007)

CVL 0. 434(0. 053) 1. 489(0. 155) 0. 294(0. 183) 0. 218(0. 149) 0. 928(0. 081) 0. 788(0. 147) 0. 330(0. 007)

CRL 0. 313(0. 067) 8. 130(38. 451) 0. 542(0. 139) 0. 303(0. 135) 0. 900(0. 066) 0. 707(0. 130) 0. 355(0. 042)

LAD 0. 284(0. 259) 15. 177(3. 348) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 647(0. 000)

Huber 0. 123(0. 415) 14. 924(3. 741) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 647(0. 000)

Oracle1 0. 019(0. 008) 1. 307(0. 135) 1. 000(0. 000) 0. 380(0. 072) 0. 498(0. 138) 1. 000(0. 000) 0. 667(0. 025)

Oracle2 0. 170(0. 097) 7. 397(3. 195) 0. 914(0. 109) 0. 445(0. 064) 0. 712(0. 148) 1. 000(0. 000) 0. 615(0. 022)

γ -MDSP 0. 069(0. 067) 1. 467(0. 241) 1. 000(0. 000) 0. 402(0. 084) 0. 550(0. 181) 0. 654(0. 084) 0. 669(0. 019)

MDSP 0. 668(0. 679) 4. 392(1. 773) 0. 760(0. 160) 0. 469(0. 073) 0. 552(0. 089) 0. 563(0. 070) 0. 643(0. 015)

FLPa 0. 428(0. 426) 1. 949(0. 472) 0. 785(0. 164) 0. 538(0. 031) 0. 595(0. 109) 0. 504(0. 039) 0. 652(0. 005)

FTLP 0. 446(0. 387) 2. 033(0. 587) 0. 811(0. 143) 0. 542(0. 036) 0. 595(0. 107) 0. 504(0. 050) 0. 652(0. 007)

CVL 0. 418(0. 055) 1. 489(0. 130) 0. 366(0. 142) 0. 225(0. 144) 0. 938(0. 046) 0. 771(0. 153) 0. 330(0. 006)

CRL 0. 374(0. 156) 2. 046(3. 146) 0. 537(0. 126) 0. 362(0. 156) 0. 896(0. 083) 0. 637(0. 156) 0. 330(0. 035)

LAD 0. 947(0. 853) 13. 395(4. 185) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 649(0. 000)

Huber 0. 538(0. 911) 13. 357(3. 510) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 642(0. 000)

Oracle1 0. 159(0. 169) 1. 312(0. 149) 0. 980(0. 076) 0. 367(0. 058) 0. 532(0. 082) 1. 000(0. 000) 0. 665(0. 021)

Oracle2 1. 061(1. 169) 9. 961(5. 181) 0. 680(0. 148) 0. 459(0. 056) 0. 578(0. 097) 1. 000(0. 000) 0. 618(0. 019)
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Table
 

3　 Dependent
 

X
 

and
 

Z ,
 

q=20,r=0. 1

Correlation n Method MSE(α) MSE(β) TPR(α) TPR(β) TNR(α) TNR(β) RI

AR

180

120

γ -MDSP 0. 045(0. 043) 1. 165(1. 675) 1. 000(0. 000) 0. 414(0. 086) 0. 617(0. 191) 0. 646(0. 092) 0. 655(0. 021)

MDSP 0. 463(0. 111) 5. 541(1. 765) 0. 476(0. 132) 0. 483(0. 065) 0. 492(0. 114) 0. 547(0. 067) 0. 647(0. 012)

FLPa 0. 501(0. 245) 2. 457(0. 456) 0. 567(0. 197) 0. 534(0. 050) 0. 553(0. 141) 0. 491(0. 048) 0. 651(0. 009)

FTLP 0. 455(0. 087) 2. 463(0. 394) 0. 494(0. 138) 0. 538(0. 043) 0. 474(0. 134) 0. 498(0. 056) 0. 652(0. 008)

CVL 0. 492(0. 012) 1. 581(0. 105) 0. 050(0. 058) 0. 115(0. 131) 0. 956(0. 046) 0. 883(0. 139) 0. 326(0. 011)

CRL 0. 495(0. 029) 1. 444(0. 210) 0. 098(0. 067) 0. 208(0. 090) 0. 898(0. 072) 0. 788(0. 106) 0. 333(0. 056)

LAD 0. 213(0. 079) 5. 927(1. 794) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 639(0. 000)

Huber 0. 203(0. 102) 5. 728(1. 780) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 637(0. 000)

Oracle1 0. 034(0. 016) 1. 190(0. 118) 1. 000(0. 000) 0. 367(0. 077) 0. 502(0. 145) 1. 000(0. 000) 0. 658(0. 027)

Oracle2 0. 484(0. 120) 11. 109(4. 246) 0. 496(0. 135) 0. 485(0. 054) 0. 502(0. 125) 1. 000(0. 000) 0. 622(0. 020)

γ -MDSP 0. 184(0. 101) 1. 536(4. 174) 0. 930(0. 166) 0. 375(0. 110) 0. 540(0. 179) 0. 657(0. 101) 0. 652(0. 053)

MDSP 1. 661(1. 236) 7. 469(2. 745) 0. 518(0. 085) 0. 468(0. 056) 0. 510(0. 105) 0. 562(0. 075) 0. 643(0. 013)

FLPa 0. 830(0. 507) 3. 972(1. 917) 0. 554(0. 137) 0. 515(0. 042) 0. 524(0. 106) 0. 485(0. 060) 0. 649(0. 008)

FTLP 0. 861(0. 517) 4. 174(1. 656) 0. 500(0. 090) 0. 530(0. 044) 0. 504(0. 089) 0. 492(0. 057) 0. 650(0. 008)

CVL 0. 528(0. 208) 1. 598(0. 106) 0. 044(0. 065) 0. 093(0. 123) 0. 948(0. 066) 0. 906(0. 123) 0. 327(0. 009)

CRL 0. 497(0. 029) 3. 568(10. 567) 0. 066(0. 058) 0. 208(0. 142) 0. 941(0. 055) 0. 794(0. 152) 0. 324(0. 033)

LAD 0. 266(0. 115) 4. 365(1. 333) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 642(0. 000)

Huber 0. 291(0. 155) 5. 078(1. 555) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 642(0. 000)

Oracle1 0. 279(0. 331) 1. 308(0. 167) 0. 958(0. 086) 0. 363(0. 078) 0. 508(0. 078) 1. 000(0. 000) 0. 657(0. 030)

Oracle2 2. 222(2. 160) 16. 165(6. 557) 0. 476(0. 102) 0. 473(0. 064) 0. 488(0. 075) 1. 000(0. 000) 0. 614(0. 021)

Band

180

120

γ -MDSP 0. 029(0. 009) 1. 521(0. 445) 1. 000(0. 000) 0. 402(0. 096) 0. 605(0. 190) 0. 632(0. 103) 0. 658(0. 023)

MDSP 0. 175(0. 089) 3. 197(1. 066) 0. 914(0. 107) 0. 456(0. 071) 0. 656(0. 123) 0. 567(0. 092) 0. 641(0. 021)

FLPa 0. 216(0. 166) 2. 005(0. 637) 0. 886(0. 120) 0. 544(0. 039) 0. 708(0. 114) 0. 494(0. 068) 0. 655(0. 006)

FTLP 0. 158(0. 072) 1. 782(0. 222) 0. 914(0. 103) 0. 547(0. 036) 0. 719(0. 141) 0. 501(0. 053) 0. 656(0. 007)

CVL 0. 449(0. 039) 1. 568(0. 135) 0. 226(0. 150) 0. 177(0. 152) 0. 927(0. 065) 0. 824(0. 157) 0. 326(0. 011)

CRL 0. 332(0. 062) 2. 639(7. 963) 0. 498(0. 124) 0. 288(0. 146) 0. 893(0. 072) 0. 707(0. 148) 0. 351(0. 059)

LAD 0. 185(0. 281) 6. 718(1. 853) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 644(0. 000)

Huber 0. 383(0. 754) 7. 367(2. 304) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 647(0. 000)

Oracle1 0. 035(0. 018) 1. 301(0. 187) 1. 000(0. 000) 0. 386(0. 089) 0. 492(0. 154) 1. 000(0. 000) 0. 654(0. 034)

Oracle2 0. 184(0. 079) 6. 740(4. 270) 0. 906(0. 113) 0. 446(0. 070) 0. 664(0. 121) 1. 000(0. 000) 0. 615(0. 024)

γ -MDSP 0. 233(0. 181) 1. 445(1. 741) 0. 905(0. 173) 0. 392(0. 094) 0. 580(0. 182) 0. 667(0. 124) 0. 656(0. 028)

MDSP 0. 781(0. 601) 3. 878(2. 232) 0. 742(0. 150) 0. 472(0. 070) 0. 584(0. 106) 0. 570(0. 094) 0. 642(0. 020)

FLPa 0. 554(0. 571) 2. 797(1. 355) 0. 746(0. 149) 0. 530(0. 041) 0. 602(0. 119) 0. 510(0. 062) 0. 650(0. 008)

FTLP 0. 379(0. 260) 2. 195(0. 641) 0. 809(0. 148) 0. 548(0. 037) 0. 616(0. 139) 0. 499(0. 048) 0. 655(0. 007)

CVL 0. 435(0. 038) 1. 564(0. 130) 0. 245(0. 121) 0. 160(0. 156) 0. 942(0. 058) 0. 841(0. 152) 0. 328(0. 010)

CRL 0. 395(0. 207) 1. 498(0. 917) 0. 485(0. 125) 0. 286(0. 148) 0. 898(0. 075) 0. 719(0. 138) 0. 332(0. 040)

LAD 0. 740(0. 391) 5. 657(1. 849) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 649(0. 000)

Huber 0. 392(0. 291) 5. 790(2. 057) 0. 000(0. 000) 0. 000(0. 000) 1. 000(0. 000) 1. 000(0. 000) 0. 642(0. 000)

Oracle1 0. 161(0. 159) 1. 301(0. 168) 0. 978(0. 058) 0. 368(0. 083) 0. 512(0. 096) 1. 000(0. 000) 0. 658(0. 031)

Oracle2 0. 864(0. 779) 7. 133(4. 663) 0. 726(0. 154) 0. 450(0. 070) 0. 562(0. 116) 1. 000(0. 000) 0. 614(0. 024)

　 　 The
 

proposed
 

method
 

has
 

the
 

smallest
 

MSE
 

of
 

α
 

in
 

all
 

settings
 

besides
 

Oracle1.
 

The
 

MSE (α) of
 

our
 

method
 

are
 

significantly
 

improved
 

compared
 

to
 

other
 

methods.
 

This
 

is
 

because
 

our
 

method
 

introduce
 

the
 

γ- divergence
 

to
 

increase
 

the
 

model
 

robustness.
 

Also,
 

our
 

method
 

has
 

the
 

smallest
 

MSE (β)
 

besides
 

Oracle1,
 

which
 

has
 

a
 

significant
 

improvement
 

on
 

original
 

MDSP
 

approach.
 

This
 

is
 

because
 

we
 

get
 

more
 

precise
 

α̂
 

and
 

we
 

reduce
 

errors
 

of
 

β̂
 

by
 

iteration.
In

 

addition,
 

the
 

results
 

show
 

that
 

our
 

approach
 

has
 

the
 

biggest
 

TPR (α) in
 

all
 

methods
 

besides
 

Oracle1.
 

As
 

for
 

RI,
 

we
 

can
 

find
 

that
 

our
 

method
 

has
 

161



中国科学院大学学报(中英文) 第 41 卷

almost
 

the
 

biggest
 

value
 

in
 

all
 

settings.
 

Although
 

our
 

method
 

has
 

lower
 

TNR
 

than
 

CVL
 

and
 

CRL,
 

CVL
 

and
 

CRL
 

have
 

the
 

worest
 

performance
 

on
 

TPR,
 

which
 

makes
 

the
 

worst
 

result
 

of
 

RI
 

in
 

all
 

approaches.
 

We
 

should
 

notice
 

that
 

the
 

results
 

of
 

TNR (α)
 

of
 

all
 

methods
 

are
 

not
 

too
 

high,
 

and
 

this
 

is
 

a
 

challenge
 

for
 

above
 

approaches.
In

 

general,
 

the
 

proposed
 

method
 

has
 

the
 

closest
 

values
 

to
 

Oracle1.
 

Our
 

method
 

is
 

robust
 

against
 

the
 

contamination
 

data
 

and
 

misspecification
 

of
 

subgroup
 

numbers
 

in
 

terms
 

of
 

the
 

consistently
 

smallest
 

MSE
 

and
 

highest
 

TPR
 

among
 

all
 

approaches.

3　 Real
 

data
 

application
 

　 　 In
 

this
 

section,
 

we
 

apply
 

the
 

proposed
 

robust
 

individualized
 

subgroup
 

analysis
 

method
 

to
 

the
 

data
 

of
 

SKCM.
 

Skin
 

cutaneous
 

melanoma
 

is
 

one
 

of
 

the
 

highly
 

lethal
 

and
 

aggressive
 

skin
 

diseases.
 

The
 

identification
 

of
 

biomarkers
 

is
 

of
 

great
 

importance
 

for
 

clinical
 

treatment.
 

But
 

handling
 

high-dimensional
 

data
 

analysis
 

and
 

identifying
 

potential
 

genes
 

on
 

the
 

dataset
 

is
 

challenging
 

Zhang
 

et
 

al. [20] .
 

The
 

data
 

includes
 

342
 

individuals,
 

the
 

response
 

variable
 

is
 

Breslow’s
 

depth,
 

and
 

the
 

covariants
 

includes
 

9
 

environmental
 

effects
 

and
 

20189
 

mRNA
 

expression.
 

The
 

response
 

variable
 

Breslow’s
 

depth
 

in
 

the
 

dataset
 

is
 

considered
 

to
 

be
 

a
 

prognostic
 

factor
 

for
 

melanoma
 

in
 

medicine,
 

that
 

is,
 

the
 

greater
 

the
 

Breslow
 

depth,
 

the
 

lower
 

the
 

survival
 

rate.
 

The
 

heterogeneous
 

effect
 

of
 

environmental
 

factors
 

on
 

individual
 

skin
 

melanoma
 

has
 

been
 

mentioned
 

many
 

times
 

in
 

the
 

field
 

of
 

biomedicine[21] .
 

Therefore,
 

it
 

is
 

reasonable
 

to
 

take
 

environmental
 

variables
 

as
 

heterogeneous
 

variables
 

in
 

genetic
 

and
 

environmental
 

data.
 

Consider
 

a
 

linear
 

model
 

with
 

heterogeneous
 

variables, yi = XT
i β i + ZT

i α + εi ,
 

denote
 

yi
 as

 

the
 

Breslow’s
 

depth
 

(log-transformed)
 

of
 

ith-individual,
 

Xi
 as

 

the
 

environmental
 

variables
 

of
 

ith-individual,
 

and
 

Z i
 as

 

the
 

mRNA
 

expression.
 

We
 

removed
 

covariates
 

with
 

missing
 

value
 

rates
 

greater
 

than
 

0. 15
 

and
 

removed
 

other
 

individuals
 

with
 

missing
 

values.
 

The
 

final
 

remaining
 

294
 

individuals
 

with
 

7
 

environmental
 

covariates.
 

Meanwhile,
 

we
 

used
 

prescreening
 

for
 

the
 

selection
 

of
 

genetic
 

variables,
 

resulting
 

in
 

50
 

remaining
 

mRNA
 

variables.
 

To
 

identify
 

environmental
 

factors
 

significantly
 

associated
 

with
 

melanoma
 

in
 

each
 

individual,
 

we
 

used
 

7
 

environmental
 

covariates
 

as
 

heterogeneous
 

potential
 

predictors
 

and
 

added
 

genetic
 

covariates
 

as
 

homogeneous
 

variables.
 

The
 

gene
 

coefficients
 

are
 

shown
 

in
 

the
 

Table
 

4
 

and
 

the
 

results
 

indicate
 

that
 

11
 

of
 

the
 

50
 

genes
 

are
 

significantly
 

associated
 

with
 

melanoma,
 

and
 

the
 

selected
 

genes
 

have
 

been
 

shown
 

in
 

the
 

available
 

literature
 

to
 

be
 

highly
 

correlated
 

with
 

skin
 

cutaneous
 

melanoma.
 

Lambert[22]
 

mentioned
 

the
 

gene
 

CCNK
 

as
 

one
 

of
 

the
 

20
 

most
 

significantly
 

expressed
 

genes
 

in
 

squamous
 

cell
 

carcinoma
 

of
 

the
 

skin,
 

and
 

also
 

CCNK
 

is
 

a
 

gene
 

involved
 

in
 

DNA
 

repair
 

and
 

has
 

a
 

better
 

role
 

in
 

patient
 

prognosis[23] .
 

CNOT11,
 

one
 

of
 

the
 

eight
 

subunits
 

of
 

the
 

mammalian
 

CCR4 - NOT
 

complex,
 

plays
 

a
 

dual
 

role
 

in
 

the
 

control
 

of
 

tumor
 

progression[24] .
 

In
 

characterizing
 

the
 

transcriptome
 

of
 

Spitzoid
 

neoplasms
 

cutaneous
 

melanocytic
 

proliferations
 

with
 

digital
 

mRNA
 

expression
 

profiles,
 

EIF2B4
 

is
 

one
 

of
 

the
 

most
 

informative
 

genes[25] .
 

In
 

addition,
 

LSM12
 

was
 

detected
 

more
 

frequently
 

in
 

male
 

carriers
 

containing
 

preferred
 

partner
 

BRCA1
 

fusion
 

mutations,
 

and
 

cutaneous
 

melanoma
 

were
 

the
 

frequent
 

tumors
 

demonstrating
 

BRCAm
 

in
 

males[26] .
 

Also,
 

PSMD9
 

showed
 

significant
 

upregulated
 

expression
 

in
 

primary
 

tumors[27] .
 

Also,
 

the
 

TRIAP1
 

gene
 

is
 

involved
 

in
 

cell
 

cycle
 

regulation
 

and
 

cellular
 

stress
 

response,
 

regulating
 

P53-mediated
 

apoptosis
 

or
 

cell
 

death
 

in
 

response
 

to
 

stresses
 

such
 

as
 

UV
 

irradiation
 

or
 

DNA
 

damage[28] .
　 　 The

 

three
 

heterogeneous
 

variables
 

AJCC
 

NODES
 

PATHOLOGIC
 

PN,
 

AJCC
 

TUMOR
 

PATHOLOGIC
 

PT,
 

and
 

GENDER
 

were
 

selected
 

for
 

analysis,
 

and
 

subgroups
 

were
 

classified
 

according
 

to
 

whether
 

the
 

coefficients
 

of
 

the
 

heterogeneous
 

variables
 

were
 

zero
 

or
 

not.
 

The
 

294
 

individuals
 

were
 

classified
 

into
 

a
 

total
 

of
 

four
 

subgroups,
 

and
 

the
 

values
 

of
 

the
 

non-zero
 

coefficients
 

are
 

shown
 

in
 

Table
 

5.
 

The
 

four
 

subgroups
 

classified
 

were
 

tested
 

for
 

differences
 

with
 

the
 

rest
 

of
 

the
 

variables
 

and
 

the
 

results
 

showed
 

significant
 

differences
 

in
 

AJCC
 

METASTASIS
 

PATHOLOGIC
 

PM,
 

CLARK
 

LEVEL

261
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　 　 　 　 　 Table
 

4　 Coefficients
 

of
 

gene
Gene Coefficient Gene Coefficient Gene Coefficient Gene Coefficient

AAMP EIF1 OXA1L SEC11A
ANAPC5 EIF2B4 0. 002

 

312 PIGH 0. 002
 

881 SPPL3
ANKLE2 EIF3I PITHD1 SPRYD7 0. 002

 

098
CAMTA2 0. 001

 

525 FOXK2 PITPNA SRRT
CCNK 0. 001

 

122 GORASP2 PSMD9 0. 002
 

817 STK16
CCT7 IAH1 0. 001

 

721 RABGEF1 TMED2
CERS5 LRRC47 RBM4 TMEM120B 0. 005

 

418
CLK3 LSM12 0. 001

 

624 RER1 TMEM248
CNOT11 0. 001

 

021 MAPK1IP1L RNF10 TRIAP1 0. 003
 

136
COX7A2L MBD1 RNF34 TTC4
CSNK1D MLX SDF2 ZDHHC5
DDX23 NAT10 SDHAF2 ZNF207
DIABLO NIPA2

Table
 

5　 Information
 

about
 

subgroups
Subgroup 1 2 3 4
Number

 

of
 

subgroup 156 90 11 37
Coefficients
AJCC

 

NODES
 

PATHOLOGIC
 

PN 0. 000
 

0 0. 083
 

9 0. 083
 

9 0. 083
 

9
AJCC

 

TUMOR
 

PATHOLOGIC
 

PT 0. 293
 

9 0. 000
 

0 0. 000
 

0 0. 293
 

9
GENDER 0. 000

 

0 0. 001
 

0 0. 000
 

0 0. 000
 

0
Significance

 

test p-value
AJCC

 

METASTASIS
 

PATHOLOGIC
 

PM 0. 005
 

3
CLARK

 

LEVEL
 

AT
 

DIAGNOSIS 3. 94E-09
SAMPLE

 

TYPE 7. 66E-06

AT
 

DIAGNOSIS,
 

and
 

SAMPLE
 

TYPE.
 

This
 

suggests
 

that
 

environmental
 

variables
 

have
 

a
 

strong
 

heterogeneous
 

effect
 

on
 

melanoma
 

patients,
 

so
 

that
 

the
 

risk
 

of
 

melanoma
 

is
 

diverse
 

at
 

the
 

individual
 

level
 

and
 

other
 

environmental
 

factors.
 

Therefore,
 

in
 

the
 

treatment
 

and
 

prevention
 

of
 

melanoma,
 

individualized
 

treatment
 

plans
 

should
 

be
 

carried
 

out
 

at
 

the
 

individual
 

level.

4　 Discussion
 

　 　 In
 

this
 

paper,
 

we
 

consider
 

a
 

robust
 

individualized
 

linear
 

model
 

based
 

on
 

γ-divergence.
 

For
 

heterogeneous
 

variables,
 

we
 

use
 

MDSP
 

penalty
 

term
 

to
 

realize
 

individualized
 

penalty.
 

For
 

contaminated
 

homogeneous
 

variables,
 

we
 

use
 

gamma
 

divergence
 

to
 

obtain
 

robust
 

estimation
 

of
 

anti
 

pollution.
 

We
 

further
 

propose
 

a
 

two-step
 

iterative
 

method
 

to
 

calculate
 

the
 

above
 

process.
 

In
 

addition,
 

we
 

have
 

carried
 

out
 

numerical
 

simulation,
 

and
 

the
 

results
 

show
 

that
 

our
 

method
 

has
 

better
 

effect.
 

In
 

addition,
 

the
 

analysis
 

of
 

SKCM
 

data
 

shows
 

that
 

this
 

method
 

has
 

strong
 

applicability.
 

And
 

in
 

the
 

future
 

work,
 

it
 

can
 

be
 

extended
 

to
 

the
 

generalized
 

linear
 

model
 

to
 

make
 

it
 

more
 

generalized.
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