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Abstract This paper deals with quasilinear elliptic equations of singular growth like — Au -
ulA(u’) =a(x)u”". We establish the existence of positive solutions for general a(x) € L'(£2) ,p >
2, where Qis a bounded domain in R " with N = 1.
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B OE R REATRELANEBEME TR - Au - uA(u®) =a(x)u'y T —fH
a(x) e '(Q),p>2, BATZFTEEMNFERE AT QIR FHWARXHEN = 1,
KR WEAMET R A -1 B mE A

Let £2 be a smooth bounded domain of R ", N = 0y =— Ay + V() —h(x, | g1
1 and let H(£2) be the standard Sobolev space —kA[p(L Y1) 1p" (L 1)y, (2)
consisting of functions which vanish on the boundary
of £2 and whose gradient is in L’(£2). We consider

the following quasi-linear singular equation

which has wide applications to physical models,
suchas the superfluid film equation in plasma physics
when p (s)=s'"", the self-channelling of a high-

- Au - uA(d®) = alx) 1 in 0, power ultra short laser in matter when p(s) =
u

(1) B .
S0 in0 0 90 V1 +s ’ , fluid mechanics'®’ , dissipative quantum
u inf2, u=0o0n s

where a(x) > Oa.e. inf2anda € L'({2) withp >

mechanics, and condensed-matter theory'*'. A lot of

2. This type of equations is closely related to the results have been obtained in, for example, Refs.

standing wave solutions of the following quasilinear [5-7] and references therein. Singular problems

Schrodinger equation have been intensively studied since 1970s because of
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their wide applications: boundary layer phenomenon
in fluid mechanics, chemical heterogenous catalysts,

glacial advance, etc. ; we refer the reader to the

books by Agarwal and O’ Regan'®', and Hernandez
and Mancebo'®' for an excellent introduction to the
singular boundary theory.
For the quasilinear singular equation involving a
singular function f
- Au - uA(v?) =f(x,u) in O,
in 2, u =0 on df,

there are only a few results available about the

(3)

u>0

existence of solutions by now. In Ref. [10], Marcos
do O and Moameni considered the existence of
radially symmetric solutions when £21is a ball centered
at the origin and the nonlinearity f(u) = Au’ —u -
u”with —y € (- 1,0). In Ref. [11], Santos,
Yang and Zhou studied the case f(x,u)= Aa(x)u™ +
b(x)u’ with -y e (-1,0),8e (1,2:2" = 1) and
obtained the existence and multiplicity of solutions.
For strongly singular quasilinear
Ref. [12] Alves and Reis used the techniques
developed in Ref. [ 13] by the second author for pure
and established the

sufficient and necessary condition for the existence of

equations, in

strongly singular equations
solutions in the case when f(x,u) = h(x)u™ +g(x,
w) with =y <= 1. When —y = - 1, Alves'"* and
Liu et al. '™ established the existence results for all
-y <0andf(x,u)= a(x)u™ + Au with coefficient

function a(«x) satisfying: for each —y < O there exists

0< g, e C(ﬁ) and p > N such that a(x)e,” €
L’(£2), which is used to construct the upper-lower
solutions to overcome the singularity. In this paper
we study the case — y = — 1 and face it in the

quasilinear singular problem (1) for general a(x) e
L’(2) withp > 2.
1 The main result

Theorem 1.1 let 2 C R, N =1, be a
bounded domain with smooth boundary 0£2. If a(x) >
0 a.e. inf2and a € L'() with p > 2, then
problem (1) admits a positive Hy({2)-solution.

By solutions of (1) we mean here solutions in
H(D) , ie ue H(I)(Q) satisfying u(x) > 0in 2
and for all y € H) (),

| Vv + 20V + 201 V1 -
0

1
a(x) —ipdx = 0.
u
We consider the following functional on Hy({2)
1
J(u) = 7J' (1 +2u*) | Vul?dx - f a(x)In(u)dx.
270 0
In this situation, one must find the integrability of
bothf | Vu | *u’dx andf a(x)Inudx is obscure on
0 )

the function space H}({2) , and so the functional I is
not well defined on the entire space Hy(£2). In
addition, when one faces quasilinear terms, a
change of functions relying upon a nonlinear ODE

equation; h is the solution of the following problem

h’(z)=;, t=0,
V1 +2R%(1)
h(t)=—h(-1), t < 0.

(c. f. Ref. [16]) and the change, defined by
o(x)=h""(u(x)),Yx € £, make singular terms
more delicate. We give a way to deal with the
singular functional after the function transform and
establish the existence of solutions for more general
coefficient functions of singular nonlinearities.

Notation. In the paper we make use of the
following notation ;

¢ denotes ( possibly different) constants;

We denote by || « | 2 =fﬂ| Vil 2dx the norm in
H)(0) and foru e HY)(£2) ,u* = max|u,0].
2 Reformulation of the problem (P)

First, we collect some properties of the function

h(t) defined by the solution of the nonlinear

equation ;
1
h(t)y=———, =0,
V1 + 20 (1)
h(t)=—h(-1), t < 0.
Lemma 2.1 (c.f. Refs. [5, 16-18]) Leth

be defined as above. Then h has the following
properties :

1) R"(¢) == 2h(t) (h'(t))*, t > 0;

2) h is unique, invertible and C” (R )-

function;;

3)0<h(t) <1, Vie R,
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D1 h ()<l tlandl h(t) 1> <21 ¢1,
Vie R,

5)M <th'(t) <h(t),t

6) | h(t) I =h(1)1¢l,ltI<landl h(t)|=

RO T el 2,1 ¢l > 1;

h h h
7)11mﬂ l,limﬂ and lim (t>
1—o0 t o0 \/Z

[\
=

8) 1 h(t) | h'(t) $[;, YieR ,W(t)h'(1)

is increasing, t>0 and 6>1;
9) h(t)h'(t)/t,
lim h(t)h (t) 1 and lim

1—0 t—®

> 0 is decreasing,

h(t)h'(t) 0.
t

9

10) h(t) “h' ¢ s strictly decreasing on (0,
+00 ) with a=2.

Proof We prove the point 10) of this lemma.
The properties 1)-9) have been proved in Refs.
[5, 16-18].
5) of this lemma, that

It is easily checked, thanks to point

3
2

2
S (1420 L= <1+2h2) L
« (1+(2+—)h2)a
o

2. Then it follows that

since o =

LR h (01]

_h(1+ 2hz)2 - (a+ (2a +2)h*)t
RN(1 + 2R%)2
By the change of function w(x) = h™'(u(x)),

<0 U

we see that if o € H)({2) is a solution of

- Aw =a(x) mh (w) in £, (4)
w > 0in 2, o =0 on d2,

namely,

fva)wf—au h(( ; =0, Vi e HY(D) .

then h(w) € Hy(2) is the solution of (1). Now we

write that
I{w)= %fg | Vo | *dx - Jﬂa(x)lnh(w(x) ) da.

Note that, after the transformation of u(x) € Hy({2)

intoh ™' (u(x)) =w(x) € Hy(L), the difficulty for
the integrability of f u’ | Vu | *dx has transferred to
)

how to control the singular term Inh(w(x)),Vx €
{2, since h(0) = 0, in which h(t) the solution of an
nonlinear O. D. E.

restrict our attention to the well defined set of

can not be expressed. We first

functions in H}(£2) for the singular functional I( w) :
X and NV as follows

X={we H(N):0 >0a.e inl,
a(x)lnw(x) € L'(2)},

N=floeX: o]’

W@
- [ a0 (e =0},

Indeed, since h(0) = 0 and h(z) is strictly

increasing on [ 0,+e ), thanks to properties 4) and

6) of Lemma 2. 1, we get

UA a(x)lnh(w(x))dx‘ SL a(x) | Inh(w(x)) | dv

= L a(x)Inh(w(x))dx $L a(x)lnw(x)dx <+ oo,

U@ a(x)lnh(w(x))dx‘ <

= L_ a(x)ln(w) dx
Lﬁ[wl]a(x) {ln(h(ll)) + ln(w(lx)) } dx +
Jy {I“(Mll)) ) }dx

<21 Inh(D) || ae)de +%f () | nw(x) | dx <+ o,

L a(x) | Inh(o(x)) | dx

where

A,={x € 2:Inh(w(x)) > 0},

A ={x e Q:Inh(w(x)) <0},
which clearly implies that the singular functional [ is
well defined on X. In addition, for any ¢ > 0 and

we X,
2 1 2
() =¢ ol - [ a(x) k(1) dx,
2 0

so that

h'(tw)

%I(ta)) P —jga(x) ) @
Note that, thanks to property 5) of Lemma 2. 1, we
get
h'(tw(x))

o(x) < (tw(x)) 'ox)= ", Yx € 0.

h(tw(x))
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h'(tw)
h(tw)

Claim 2.1 The set X is not empty.

Proof of Claim 2.1
positive eigenfunction of — A in {2 with Dirichlet
=Xe,e =
0, with A, the first Dirichlet eigenvalue of —A. Tt is

wdx makes sense.

Thusf a(x)

We let ¢, be the first
boundary condition, that is, — Ag,

well known that

oo <« (5)

if and only if —y > -1 (c.f. Ref. [19]). By the
result of Ref. [ 19] ( Theorem 1 and 2),
know that; for any —a € (-3, - 1),

two positive constants d, ,d, and 0, (x) € C*(2) N

c<§) N HY(N) 0 (x) > 0inLsuch that

osoi“‘( ) <

we also

there exist

w,(x) < 1401“’( ), Vx e 2 (6)

We choose o, = so that —a, € (=3, - 1)
»-
2 !
and — 2 > -1 sincep > 2, wherep’ = ———.
+ a, p-—-1

Then it is possible to find the corresponding function

w, (x) € HI(Q),a)%(x) > 0,Vx e £ verifying

2
l+a

w, (x) < dp, (x),Yx € £ For
e HO(.Q),w%(x) >0 Vx € 02, we

divide the domain {2 into three parts;
<-11,

0901 ()

such a o,

v, =17 € Qlno,
“0

“0

A
B, =§xe(2;|lnwa0|$l},
D

> 11,

={x € 2:lho,
@ 0

and then we have

J a(x)lnw, dx SJ a(x) | lnw, | dx
B 0 B 0
% “%

$f a(x)dx $fa(x)dx <+,
B 0

w

UD a(x)Inw, dx =L a(x)lnw, dx
‘o “aq

< Jﬂa(x)a) dx < C(L)a(x)pdx); I W, | <+ o0,

H a(x)lnw, dx SJ a(x) | lnw, | dx
A 0 A 0

“ “%

where we have used the fact that

J'a(x)a) 'dy < d, Ja(x)go, “(x)dx

< i ([ woa) ([ o )

x)dx) ,

) thata(x)lnwao(x) e L'(£2) and the set X is non-

empty. This ends the proof of Claim 2. 1. O
Claim 2.2 For every w € X there exists some

t(w) > 0 (which may be not unique) such that

t(w)w e Nand I[(t(w)w) < [(tw), Yt > 0.
Proof of Claim 2.2 Fixw € X. We set

=il -] aw @), Yo > 0.
Thanks to property 5) of Lemma 2. 1, we have that
1 h(w(x))
— 7(x)$1,Vxe!2.
h(tw(x))
We set

1
o=t -—[ a@)de, Vi >0,i= 12,
i’ o

(7)
so that f(¢) verifies
g.,(1) < f(1) <g,,(1), Vi >0.
Clearly, g, ,(t),i=1,2, is strictly increasing for all
t > 0 and satisfies
8 ,(t) >+ ast—+ oo, gi,w(t) —— ast —0",
then it follows that

f(t) =+ o ast—+ o, f(t) >— o ast—0".
d
Moreover, since f( ) =El(tw),Vt > 0,/(tw) is

decreasing on ¢ > 0 small and increasing on¢ > 0
large , so that there must exists some t(w) > 0 ( may
[(t(w)w),

be not unique ) such that I(tw) =
VYt > 0, which gives

S(w)) =1

We thus obtain, thanks tow € X and (8),
a(x)In(t(w)w(x)) e L'(0),

(8)
that
t(w)w(x) € N.
]

We know from the

ey [(t@0) =0

Proof of Theorem 1.1
property 4) of Lemma 2. 1 that there exists ¢, € R

such that for any function w € X,
1
1(0)= [ 1Vw 1% - [ a(x)Inh(w(x))de
270 0

1

= lol’

- La(x)h(w(x) ) dx
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1 1
= ol -] amexdz o]’ -
rd » p’ d a
1
= ol -clol =¢, YoeX, (9

where we have used the fact that Ins < s, Vs > 0.
This, with Claim 2. 1 implies inf /(@) is a finite
number. Claim 2. 2 independently gives that
vifefxl(w) $viwnE1"NI(w) < /(tH(w)w) <I(w),YVo € X.
Thus, we have obtained

ig}f[ Zir\;f[ e R.
We let {w, |

I(w,) —inf 1, which gives with inf 7 a finite number
X X

C X be the sequence such that

and (8), that {®,] C X is bounded in Hy({2).

Then there exist w, € Hy({2),g € L*(£2) and a

subsequence, still denoted by w, , such that

© —~ w,in H)(),

no

w, — w, a.e. in {2,

0, > w,in L’(2),

|, (x) 1 < g(x) . | oy(x) | < g(x) ae. inf
(10)

Since {w,}] C Xand w,(x) > 0a.e. x € {2, we

n

know w,(x) = 0, a. e. x € () We prove now
w,(x) >0a.e. x € Nand a(x)Inwy,(x) € L' ()
i.e. w, € X. Since {w,| CX, using (9), we write
that

1
Sle 1 -e =] atw,(0d

= J a(x) o, (x)dx = J a(x)Inh(w,(x))dx
0 0

= o, 1 - K(w,)
) n n) s

where we have used property 4) of Lemma 2.1 for

h. By the boundedness of {w,} in Hy({2) and

l(w,) —>i§(1fl which is a finite number, we write
| a(o)nh(w,(x))dx = 0(1)
0
fa(x)lnwn(x)dx=0(1), (11)
0

jﬂa(x)w"(x)dx =0(1).

Taking advantage of a(x) (Inw,(x) —w,(x)) <0

a.e. in{2and using Fatou’ s Lemma, one also gets
a(x)limsup(lnw,(x) —w,(x)) is integrable on {2,

and

limsupfﬂa(x) (lhw,(x) —w,(x))dx

n—+o

Sj“a(x)linlllfgp(lnwn(x) -w,(x))dx, (12)
so that, since
a(x)linrgfgp(lnwn(x) -w,(x))
%, wy(x) =0,
_{au)[lnwo(x) —w(x) ], @y(x) >0,
we thus obtain, thanks to (11) and (12) and
a(x)[Inw,(x) —w,(x)] <0,Vx € 0, that
wy(x) > 0a.e. x € (D
Sincep > 2 (sop’ < 2) and w, — w, in L’(2),
using Holder’ s inequality, we get
lim [ a(x)w,(x)dx = [ a(x)wy(x)dx. (13)
noted g 0
We write now, with w,(x) > Oa.e. inQ,lnw, (x) -
w,(x) < 0a.e. in{2, and using Fatou’ s lemma,

that

limsupfﬂa(x) Inw,(x)dx - jga(x) w,(x)dx

n—+o

= limsup | a(2) 1w, (x)dx ~limsup | (), (x)dx
Sli"rrfgpf”a(x) (Inw,(x) -, (x))dx

< L}a(x)li"rqup(lnw”(x) ~w (%)) dx
=jﬂa(x)(lna)0(x) — wy(x)) dx

- jﬂa(x)lnwo(x)dx - J{)a(x)wo(x)dx.

Since f a(x)wy(x)dx is finite, using (11), we
0
have that
- <limsupj a(x)Inw,(x)dx
n—+w J

$J'ga(x)lnwo(x)dx < fga(x)wo(x)dx <+ o,

so that we obtain a(x)lnw,(x) e L'(2). It is
worthy remarking here that the main difference

between dealing with the singularities u™' and u™ (v #
1) lies in the energy controlling; j Inu(x) dx should
)

be controlled from both sides since Ins < 0, Vs €

(0,1),Ins —>— o ass—0"andIlns >0, Vs > 1,
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and f u' ™ dx just need to be controlled form one side
0

7> 0,Vs > 0.

Then we prove that I(w,) =i§(1f 1. Moreover,

. 1
since s

w, € N. Indeed, since
a(x)Inh(w,(x)) < a(x)In(o,(x))
<a(x)o,(x) < a(x)g(x)
and a(x)g(x) e L'(£2), using Fatou’ s lemma and

0,(x) = w,a.e. in {2, we get

limsupjna(x)lnh(wn(x) Vdx <

n—+o

fﬂa(x)lnh<w0<x>)dx, (14)

so that

1
inf/ =lim I(w,) =liminf| — | Vo, 1° -
X o2

n—+wo n—+o

1
a () Inh(w,(x))dv Zliminf [ | Vo, 1 2dx +
270

n—+o

limian}l —a(x)Inh(w,(x))dx

n—+o

>l 12+ ] = aG)h(on())dx = I(w,)

= I(1(w,)w,) Bigfl =i?fl,

where we have used the weak lower semicontinuity of

norm, (14), and

limian’!2 —a(x)Inh(w,(x))dx

n—+o

= —limsupfﬁa(x)lnh(wn(x))dx.

This proves that
I(w,) =irX1fI. (15)
This leads to
1wy =0,
that is, w, € N.

We now show that h(w,) is a solution of
problem (1). Suppose ¢ € Hy(£2),0(x) = 0,
Vx e Qande > 0. Setv =w, + £p, we divide the
domain (2 into three parts;

A ={x e 2:lnv < -1},
B ={xe: | lwl<l1},
D, =1{x € Q:lnwv > 1},

and then we have

JBa(x)ln(a)O + &) dx

< J a(x) | In(w, +e@) | dx

v

$fa(x)dx $fa(x)dx <+ oo,
B 0

A

= La(x)ln(wo + e@)dx

v

Uuau)ln(wo + 50)dx

< J'Qa(x) (w, + ep)dx

< c(f a(x)”dx) "Nw, +ee| <+ o,
0

U a(x)In(w, + ep)dx

AI,

< [ aCx) 1 In(w, + £) | dx
A,

1
= F g
Lﬁa(x)ln ( . )dx Lla(x)ln de

$Ja(x)| In w, | dx
A

$fa(x)|lnw0|dx <+ o,
0

sow, + ep € X. By Claim 2.2 and (15) we can
conclude that
I, + £9) = 1(1(w, + £0) (0, + £0))
2ir\1f[=[(w0),
and then we have
lw, +e0?~ llo,|*
2

= J'Qa(x)lnh(wo + e@)dx - fﬂa(x)lnh(wo)dx.

(16)
Dividing (16) by & > 0 and letting € — 0" we

conclude with Fatou’ s Lemma that

waOVgodx
0
fa(x)[lnh(wo +ep) — Inh(w,) Jdx
= liminf
0" E
Inh(w, + ¢ - Inh(w
2fliminfa<x)[ nh(w, +ep) - Inh(w,) ]
0 507 &
h,((‘)o)
= dx. 17
o) Sy ¥ (17)

Suppose ¢y € Hy(£2) andt > 0. Inserting ¢ = (o, +
up) " into (17), we get
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1
Os—waOV(wO +h) " -
t’o

a(x) e )(

(o) w, +1p) " dx =

1
T(Jn - f.(m[u()ﬂ:/m()] )

(Von (wy + 1) —a(x) h( )(wo +t¢)) dx

(@,)
h'(w,)

sfnv%w #(x) o e -

f! l Vo Ndz. (18)

ﬂ[ab+t|/;<0]
Since meas [w, + 1y ] = 0ast— 0", by passing to

the limit ast — 0" we can conclude that

h' (w,
fvwow ) ))¢d

The same conclusion can be drawn for — ¢ in place
of i, thus it follows that h(®,) is indeed a Hy({2)-
solution of (1). ]
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