B2l 5 1 Vol.21 No. 1
2004 £ 1 H Journal of the Graduate School of the Chinese A cademy of Sciences Jan. 2004

Article ID :1002— 11752004 )01-0095- 06

*

Administration of User Account in Secure OS
ZHANG Xiang-Feng SUN Yu-Fang

(Institute of Sof tware, Chinese Academy of Sciences, Beijing 100080, China)

(Received 23 December 2002 ; Revised 28 March 2003)

Abstract Many secure operating systems are developed based upon UNIX-like systems and many
access control mechanisms and audit mechanism are introduced, but the system account file does
not assure unique UID and might lead to confusion in audit trails. Users access rights in some se-
curity mechanisms are generally managed quite independently of account management and should
also be deleted when one user is removed from the account file to avoid unintended reuse by another
user. All those things require that the account file should be administrated in a way different from
the traditional one in UNIX. Putsforward a mechanism to keep unique UID and to capture user ac-
count alteration in system call level. Puts the mechanism into practice in SLIN UX, a variant of
LINUX, and provide the performance analysis.

Key words secure OS, security mechanism, audit

CLC TP309

1 Introduction

With the fast development of the Internet, information system security is highly necessary. In an infor-
mation system, the operating system is of great significance and acts as the basis of the whole information
sy stem, so the security of the operating system is the foundation of the whole information system seculity[ )
M any security mechanisms suchas mandatory access control, access control list and auditing are designed and
deployed to secure the operating system. Audit mechanism is a necessary and supplementary measure of every
secure information system and is regarded as the last defense line of the system.

Almost all security mechanisms, including mandatory access control (MAC) and access control list
(ACL), are based on the subject ID because nearly all kinds of security attributes are bound to the subject
IDs. Role-based access control (RBAC) seems a bit complex, but we could consider only the roles assigned to
auser. As TCSEC'? and CC'?' require. when a subject is removed from the system, all security attributes
related to it should also be erased at the same time to avoid being re-used by another subject with the same 1D
(possibly introduced later). M ost security mechanisms maintain security attributes in the kernel level to pro-
tect the security configurations and do not care about user account management. While most of the multi-user
secure operating systems maintain user accounts separately from security attributes, it seems that user man-

agement has to be related to security attribute management in secure OS. But things might be complex in

most operating sy stems.

*supported by the National 863 High-tech Program of China (863-306-ZD 12-14-2), the National Natural Science Foundation of China
(60073022) and the Knowledge Innovation Engineering Program of the Chinese Academy of Sciences (KGCX 1-09)



96 E AR AR A TR R %21 &

The audit trail is probably the first thing a trained administrator will turn to when something goes
w rong or something seems amiss'? . An important thing is that the audit trail has to record all the security-
related parameters of an event at the time the event occurs. Although the modifier ‘security-related " is a bit
obscure, the most important one of those parameters is the subject s identity, that is, the user who is re-
sponsible for the event. In LINUX, asubject is generally a user (in reality a process is some kind of "direct "
sponsor of events, but there must be a user who starts the process directly or indirectly and so the user be-
comes ultimately the real sponsor of all the events occurred in the process).

Unfortunately the user identification in many multi-user operating systems can be re-used and so un-u-
nique. In UNIX-like systems, the shell ommand "useradd " can specify a new user s UID through an option

noon
-u

no matter whether or not the UID has already been used by another user. Even we could be sure to as-
sign a UID to only one user; a UID could still be shared by two or more users at different time (for example
a deleted user s UID could be reused by another user). This might introduce confusion into the audit trail.
So there should be some mechanism to avoid re-use of UIDs or to help tell apart users with the same
UIDs.

We designed a secure operating system, SLINUX, a variant of LINUX, which incorporates several se-

curity mechanisms and hence incurs the two problems presented above. We introduced a mechanism to solve

the problems. The performance test results given at the end of the paper show that the mechanism is work-

able.

2 Security mechanisms in SLINUX

There are various mechanisms that allow information systems protect the system resources and user re-
sources some of them are based on access control and some are based on information-flow control. Audit is
different from them in that it is an after-the-fact mechanism. All these mechanisms can be separately put into
practice and also be combined to further secure an information sy stem.

A ccess control mechanisms are usually viewed in terms of an access control matrix (ACM ), with rows
representing active subjects (typically a user), columns representing passive objects (typically a file or a de-
vice or some kind of other resource) and cells showing the rights. Because storing the whole ACM would
generally consume far too much space and there are always too many empty cells in ACM, real systems use
either the rows or the columns of the matrix for access decisions. Implementations based on the rows attach
alist of accessible objects to the subject and are named as "capability ', while implementations based on the
columns attach a list of subjects to the objects and are named as “access control list (ACL) "7 . In SLINUX,
ACL is implemented and the subject is identified with the user ID (The user name is rarely used except when
auser is trying to login. The system kemnel cares only about the user s UID and neglects the user s name
thoroughly. ). When an object (afile or a device) is deleted, its ACL is also erased from system kemel space
at the same time.

M andatory access control (MAC) is information-flow based. In MAC, each subject and”or object is as-
signed a security level, and the information flow is allowed if and only if the destination object has an equal or
higher security level than that of the source subject or object. SLINUX implements two kinds of MAC, i.e.
C-MAC and [-MAC. In C-MAC, the security level represents the confidentiality of an object or the highest
security level of all objects that a subject can access, while in [-Mac, the security level stands for the integrity
level of the object. In both C-MAC and F'MAG, abitset called "category " is attached to each security level

and limits the access in a similar way as the security level does.



%14 ZHANG Xiang-Feng SUN Yu-Fang :Administration of User Account in Secure OS 97

No matter what mechanisms are applied in an information system, there is always the possibility that
someone could penetrate the system, especially from inside the organization owning the system. So it is un-
doubtedly necessary to audit the system. The audit mechanism can help review the access patterns and help
discover malicious access. It can also act as a deterrent against perpetrator s habitual attempts to bypass the
system security mechanisms. It supplies an additional form of assurance that all attempts to bypass the secu-
rity mechanisms are recorded and can be traced. Even if the penetration succeeds, the audit trail will still
provide assurance in accessing the damage done by the violation ' SLINUX introduces the audit mechanism
as a security supplement to C-MAC, I-Mac and ACL. Audit rules may be based on IDs and security at-
tributes of subjects and objects. To trace user actions and ascertain the responsibility, unique UIDs are re-
quired; otherwise accountability for audited actions might be more difficulty, though not
impossible! " .

There are two common things for ACL, MAC and audit. First, users are identified by their U IDs and
different users might have different ACL, security attributes and”or audit rules. To make administra-
tion easy and finally achieve a secure system, SLINUX requires that UIDs should be unique, just as audit
mechanism does. In fact, several users sharing one UID is of little practical significance. Second, all the con-
figuration for these mechanisms are kept and maintained in kernel memory and when a user is removed, both
TCSEC and CC require to erase accordingly all its related access rights, security attributes and audit rules to
avoid that they might be re-used later. So detection of user deletion is needed.

SLINUX introduces three special users, which can substitute for neither of the other two. They are
sy stem administrator (root), security officer (secoff) and audit administrator (auditor). All these users are
added when installing the system and their names and UIDs should be kept unique and should never be delet-

ed. Intuitively this also requires inspection on change of the account file s content.

3 Inspection of operations on account file

Seen from the above, there are three things we should do in SLINUX. First, we should keep unique
UID in the account file ; second, we should detection deletion of user in the account file, and lastly, we
should ensure that special users are alw ays in the account file. It seems that we could meet these requirements
by modifying some tools already available. But things may not be like what they seem to be.

In UNTX-like systems, auser is identified with his name and identification number (UID), with only
the UID is used in system kernel. The command "useradd " is used to add a user to the system. If the option

“u " is used with 'useradd ; thenew user s UID can be specified at the command line ; otherw ise the com-
mand would automatically select a new UID for the new user. The command "userdel " can remove a user
from the system. So it seems that we could modify the command "useradd " by disabling the "u " option to
avoid duplicated UIDs and modify 'userdel " to catch the event of user deletion. Ensuring of the three special
users could also be done in this way. SLINUX does the modification indeed, but this is not enough.

In fact, the system account file is a text file and can by default be read by anyone and written by only
the system administrator (root). In SLINUX, the user 'root " is no longer trusted because too many intru-
sions succeeded in other UNTX-like systems with the result that root privilege was stolen (The other too spe-
cial users in SLINUX are introduced to partake root s privileges to secure the system ). When the root privi-

lege was stolen, the intruder can modify the account file at will. Generally speaking, an intruder would not

use the available ‘useradd " or other similar tools to modify the account file. To do this, he might (1) edit



98 E AR AR A TR R %21 &

the file directly through any editor ; or (2) replace the file with another one ; or (3) find the location of the
file on disk and modify disk blocks directly or (4) build his own tools. Direct access to physical devices is
strictly limited by SLINUX in kernel but there are still too many ways to modify the account files, which

means inspection on user actions to meet SLIN UX s requirements seems a bit impractical.

4 Principle to acquire account alteration in SLINUX

Al requirements of SLINUX on the account file are related to the content of the account file. Since in-
spection of user actions is impractical, we could turn to inspection the changes to content of the file.

For SLINUX limits access to physical devices in kernel (even root might be refused to do this), we
could only care about system calls because system calls are the only way that all kinds of user applications get
services from the operating system. Before an action that might alter the account file begins, the content of
the file is saved ; when the action is done, the content of the file is re-read (possibly not from disk due to

cache buffer) and we could com pare them to see if the action has done some alteration and w hat alteration to

the file.

S Implementation of account file inspection

In UNIX-like systems (including SLINUX), there are several system calls that can be used to modify a
file they are 'open's "write s "truncate s 'ftruncate's “rename’, "unlink ". Another system call, "
mmap » might also be used to modify a file indirectly, but it requires that the file must be opened first, so
we can just ignore it here.

Here "open " might cut a file to zero length with "O-TRUNC " flag ; "write " can only follows opening
of a file if the parameter 'flags " for ‘open " does not include 'O-RDONLY " flag ; "firuncate " acts just like
‘open " with "O-TRUNC " flag (but it can specify a new file length). So we could only check system call "
open " without 'O-RDONLY " flag and ignore ‘write " and ‘ftruncate ".

Another thing to be considered is that a file could be opened by more than one process simultaneously
and a process might open a file more than once at the same time (with different file descriptors), all of these
"open s are irrelevant to others. We could just treat them as separate 'open s of different files. To distin-
guish betw een multiple ‘open s, we use<< process-id, file-descripto> pair to specify each "open .

So here is the way to acquire account alteration events. Before afile is to be opened, if the open flag in-
cludes "WRITE ", test if the file s full name is that of the system account file or both files inode numbers
are equal (in the case of hard link). If either test passes, save the content of the file to a buffer that is identi-
fied by << process-id, available-file-descriptor> . All the buffers of this kind are linked to system list. When a
file is closed, we can check if the corresponding open flag contains "WRITE " and the file is the system ac-
count file. If both are yes, reread the file and compare its content with the old copy saved in the buffer.
Thus we can know if any user is added or deleted and if there are duplicated UIDs in the file.

The system call "truncate " seldom happens to cut a whole text line and we might regard a broken line

(according to the format of the file) as a blank line. We can save the system account file into a buffer before

truncating it. If the system call is done successfully, re-read the file s content and compare it with the saved



"
—
&

ZHANG Xiang-Feng SUN Yu-Fang :Administration of User Account in Secure OS 9

one.

There are two cases about the system call "rename ". One is just simply to change a file sname to a new
one (non-existent), and the other is similar to overwriting an existing file with another one, e.g. 'mv -f/
tmp” myfile “ete”passwd . As to the system call unlink ', we might think it as renaming a file to a non-ex-
isting file whose length is zero. When the system account file is overwritten by another file (maybe an old
copy or even a binary file), we can acquire user alteration in the same way as ‘open ” 'close " does. When

the system account file is unlinked, all the users are deleted from the system.

6 Performance analysis

SLINUX implements several security mechanisms and we do account alteration detection based on
SLINUX. We just give the performance difference before and after account alteration detection is introduced.
Four tasks are used to test performance difference. The first task repeats opening”closing the account
file in read-only mode for 10000 times, but reads nothing from it. The second one repeats opening” closing
the account file in write-only mode for 10000 times, but writes nothing to the file. The third one repeats
opening the account file in append mode for 10000 times and appends a short string to the file each time. The

last one is to build a new kernel from the source code. Tab. 1 shows the time each task costs.

Tab. 1 Results of performance test

Seconds used with account Seconds used with account
[(T,— Ty 7 Ty X 100%
detection disabled” T detection enabled” T,
Task 1(readropen’ close) 0. 297025 0. 308771 3.95%
Task 2(w1itﬁ()pen/cl()se) 0. 488683 26.705513 5364.79%
Task 3(append’ close) 0. 625211 26.979326 4215. 24%
Task 4(make kernel) 368. 356030 371. 142246 0.76%

From the table above, we can see that account alteration detection affects single operation on account file
greatly (maybe the performance cost is unbearable) except the read-only mode, but as to the whole system,
the performance cost is so little that it could be ignored thoroughly.

In fact, only very few system actions are related to the system account file, so the total cost to detect ac-
count alteration might be negligible. Hence, we can say that the mechanism we put forward in this paper to

keep unique U ID and to detect account alteration is practical.

7 Conclusion and future work

This paper states that the audit subsystem in a security operating system requires to keep account UID
unique and to capture user account alteration. It also gives a solution. We introduce the solution to SLIN UX,
avariant of LINUX, and provide the performance analysis.

We do our work in system call layer and this might burden the system performance still a bit heavily.
Future work includes bettering the code and improving the system performance further.

M aybe we should try other ways to acquire account alteration, e.g. to limit the access to the account file
to some specific role (user oot might possibly play the role), or to re-write related library functions com-

pletely. Infact, it seemsa bit odd that Linux manages all kinds of objects (files, directories, devices, pipes,



100 E AR AR A TR R %21 &

IPCs, system clock, host name and so on) in kernel while leaving only user management to application layer

thoroughly. Maybe it seems accordant to also put user management into kernel to achieve a uniform

style.

References
[ 17 P Loscoccos S Smalley, P Muckelbauex R Taylor, J Turnes J Farrell. The inevitahility of failure : The flawed assumption of security in
modern computing environments. In : Proceedings of the 21st National Information Systems Security Conference. 1998. 303— 314

[ 2] National Computer Security Center. Department of defense trusted computer system evaluation criteria. DoD 5200. 28-STD. 1985
Part 1, 2, 3. 1999

[ 3] The International Organization for Standardization. Common criteria for information technology security evaluation

[ 4] Paul Whehn. Linux security auditing. Avaihblk at http 7/ ww. sans. org. 2001

[ 51 Deborah Downs, Jerzy Rub, Kenneth Kung, Carole Joran. Issues in discretionary access control. In :Proceedings of the 1985 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, 1985. 208

[ 6] FortGeorge G Meade. A guide to understanding audit in trusted systems. NCSC-TG-001. Versiom2, Library No. S-228, 470. 1987

[ 71 Terry Escamilk. Intmusion detection : Network security beyond the firewall. Wiley Computer Publishing, 1998. ISBN 0-471-29000-9. 30

wAEE WNEF

Crp [ ) 2 B A A 96 BT, B3¢ 100080)

R 22 B AERGH ZRT K UNIX RGIF KK, 3% TCSEC B CC B ZER 5] N T 5]
) FH e THAE 22 A AL, (DR R ARAE P K5 1) ik — 1, AT AT BB 3 AR 113k 1) VR AL R AL BR
(AN TEAf B, It 220K B0 JFOR B92E UN IX R4 K5 & B =0 32 T E R G A 28 IUE R &
M5 SO XA LA ORIE F - UTD ME—VE (177 55, {875 BSE I ZA  CRu 48 i by 1) et T S vy
G PR B TeVE AR AR 7 K 5 B . XM LI 248 SLINUX RS 2 7 SLil. a4 H
TIEHHIFESLINUX R4 FRy e &5 % .

CRAER G, LS, Hi



