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Abstract The conservatism is an important indicator for measuring a robust approach. In the
process of our previous research for the conservatism of robust linear programming problems, we
have found that k is a ecritical parameter to depict the conservatism of robust linear programming
problems, where £ is the number of nonzero components in optimal solution of the extremely
conservative robust linear programming problems. In this paper we give the distribution and
expectation of k through analyzing the probability that any basic solutions are the optimal solutions of
the extremely conservative robust linear programming problems.
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In recent years, the robust method has been have been developed. However, the conservatism of

widely used in numerous fields and many models robust approaches has been a controversial issue
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since they were proposed. In order to reduce degree
of the conservatism, numerous formulations were
developed'”’.  One of the most influential
formulations is the one proposed by Bertsimas and
Sim"*’. They considered the following nominal linear

programming problem ;

max c¢'x

s. t Zaijxj$bl.
J
x =0.

Each entry a; is modeled as a symmetric and
bounded random variable, and a, takes values in
I:al.j - Al.j,aij + Eij] , Where EL:/. = 0. Besides, a limit
is applied to the number of coefficients that are
allowed to change simultaneously. The model of
Bertsimas and Sim is;

max c¢'x

s. t z aijxj+
J

max { a.x. +
1S;Ut] $;CJ,18 =[T],i;e\s;} ~ “=d 70 ]
JjeS;
(F—Lrj)a,ix,i} <) Vi
x = 0. (1)
Here, J is the set of the indices, i.e. J = {1,2,

-« .n!, where n is the dimension of x. As mentioned
in Ref. [3], model (1) gives full control of the
degree of the conservatism associated with the
constraints.  When I' progressively increases from
zero to n, the degree of the conservatism of the above
approach is expected to increase gradually. When I'
progressively increases to n, we get the extremely
conservative robust approach :

max c¢'x

s. t Z(aif +‘;g,'> X < b, Vi

J

x =0. (2)

However, Liu and Yang''' pointed out that
model (1) may become extremely conservative even
when I is far less than n. Moreover, it is showed
that model (1) does not reach the extremely
conservative state when I' is less than k, where k is
the number of nonzero components of the optimal
conservative  robust

solution of the extremely

approach.

As stated above, when I' = k, model (1)
may reach the extremely conservative state; when
I' < k, model (1) does not reach the extremely
conservative state. That is, &k is an important
parameter to analyze the conservativeness of model
(1). To some degree, kis a good indicator of the
conservativeness of model(1). Based on the study
of the distribution of k£, we can have a further
understanding of the conservativeness of model

(1) on the whole.

distribution and

In this paper we give the
expectation of k£ under two
assumptions which are widely used in the research

of linear programming problems.

1 Preliminaries

First we should have a review of the definitions
corresponding to linear programming which are
necessary for the following statement. All of our
discussions are under the assumption that the rows of
the constraint matrix are less than the columns. The
standard form of linear programming is

max ¢'x
n

s. t Z a;x;, = b, =1,-,m
j=1

x =0.
Definition 1. 1

to zero and then solve the m equations for the

If we set (n — m) variables equal

remaining variables, the resulting solution, if
unique, is called a basic solution.

Definition 1.2 The (n — m) variables which
are set equal to zero are known as mnonbasic
variables. The remaining m variables are called

If a basic

nonnegative condition, it is

basic variables. solution satisfies

called a basic

feasible solution.

Definition 1.3 The basic variables with a value of

zero are called degenerate, and the same term is

applied to the corresponding basic feasible solution.
max ¢'x

s. t 2 a; x; S b, Vi=1,2,--,n
J

x =0. (3)

Definition 1.4 The constraints of the form
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Ax( < or =)b are called matrix constraints, and
the constraints of the form x( < or =)0 are called
sign constraints. For a basic solution x, if the right

side of

constraints ) is equal to the left at X, the constraints

certain matrix constraints ( or sign
are called efficient at x.

For example, consider the following linear
programming. The matrix constraints are x;, +x, <5
and x, +2 x, < 7, the sign constraints are x, = 0
and x, = 0. For the solution (5,0), the efficient
constraints are x, + x, <5 and x, = 0.

max 2x, +x,
set ox, +x, =5
X, +2x, =7
x, =0,x, =0.
Lemma 1.1 If X is a non-degenerate basic
solution of model (3), there are n and only n
efficient constraints at X among all the matrix
constraints and sign constraints of model (3).
Besides, the coefficient vectors of the n efficient
constraints are linearly independent.
Proof See Ref. [8]. O

Consider the above example. The solution (5,
0) is a non-degenerate basic solution, and there are
two and only two efficient constraints at (5,0) , i. e.
% + x, =<5 and x, = 0. Obviously, coefficient
vectors (1,1) and (0,1) are linearly independent.
Besides, it is easy to see that (5,0) is the optimal
solution and the target vector (2,1) =2 x (1,1) -
(0,1), which is an example of the following lemma.
Lemma 1.2  Assume the target vector ¢ # O.
Let ¥ be a nondegenerate basic feasible solution of

model (3). Let [a a. I I e,

a Uk Tk 2 Tke2
I; ] be the rows which are coefficient vectors of
"

TR R
the efficient constraints at X, where a; and /; are
the ith row of A and the ith row of unit matrix,
respectively.

1) The necessary and sufficient condition that ¥
is the optimal solution of model (3) is that there
exists aA =0 such thate = A, q; +A,a, +- + A,
@, ~ A’”l ]jk-v-l - A’HZ Ijk+2 -t T )\'l ]jn'

i1) If X is the unique optimal solution of model

(3),A >0.

Proof fori), see Ref. [1].
forii) :

Suppose not, assume A, = 0. Let G = {1,2,--- m}
and G = {jo, o ojpt- LetG, = {1,2,-+-,n} and 61
= U sjrezs ot LetD = {xlax =bVje G,
Ix =0Y jeG,ax<bV¥iecG\GIlx=0Y
i e G\ 61 {. Obviously, any x € D is the feasible
solution of model (3). Since there are only (n —1)
equality constraints, there are more than one element
inD. And we havec = A,a, +-+ A a, —A 1 -
Aol

k+2 Tjpin

-+ =A, [, . By Lemma 2.2 i), anyx € D
(3). This

contradicts with the condition that the optimal

is the optimal solution of model

solution is unique. The statement follows
immediately. L]
As shown in Ref. [1], Liu and Yang pointed
out that model (1) may become extremely
conservative even when I' is far less than n.
However, they also give the following result;
Theorem 1.1 Suppose x * is the optimal solution of

model (2) with ¢ as the target vector. Let k be the
. * *
number of nonzero components inx . If 2]_ e x|

>0,k=1,and <k -1, x" is not the optimal

solution of model(1).

Proof See Ref. [1]. ]
Theorem 1.1 reveals that k£ is an important

parameter when we analyze the conservativeness of

model (1).

distribution and expectation of £.

In the following we will give the

2 Distribution and expectation of %

To simplify the following exposition, we will
use A instead of A to represent the constraints matrix
of model (2).

Let X be a random variable which represents
the number of nonzero components in the optimal

solution. We will discuss the probability p(X = k)

under the assumption that the probability
distribution of (A,b) satisfies the following
assumptionsm .

i) For any fixed (A,b), all sign combinations

of the inequalities
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A(Dx < (=) b,i =1,2,---,m,
o< (=)0 j=1,2,-,n
are equiprobable. Under this assumption, any basic
solution will appear in 2""" instances.

ii) With probability one,

A b

(l Oj
are non-degenerate. In other words, with probability
one, any basis solutions are non-degenerate.

iii) With probability one, there is a unique
optimal solution.

Considering any fixed (A4,b,c) , there are 2"""
instances in total. We will give the probability that a
basic solution is the optimal solution.

Lemma 2.1 Let x be a basic solution, then the
probability that x is the optimal solution is 1/2""".

Proof Letx be a basic solution. Obviously, x will
appear in 2""" instances. By Lemma 1. 1, there are

I

n efficient constraints atx. Let[a, ,a a1
d +

oo
I I

PRI | be the rows which are coefficient vectors

of the efficient constraints at x. That is, X satisfies

formulation (4).

aflf = bJ]
ajkf = bjk (4)
j x = 0
JE+1
Lx = 0
LetG = {1,2,---,m} and G = U odas s ofi |-

For any i € G\ G, X belongs to {x | ax = b, or {x
| ax < b,}. By assumption ii) and Lemma 1.1, x

belongs to only one of them. Let G, = {1,2,---,n}

o~

and 61 = {Jus1 Jasas " sja ). Foranyi € G\ (?1 , X
belongs to {x | Ix = 0} or {x | [x < 0f. By
assumption ii) and Lemma 1.1, x belongs to only
one of them. Without loss of generality, suppose x
satisfies formulation (5). Sincel G\ G| +| G\ @1 |
= m, the probability that formulation (6) occurs is

172",

H3E
ajlx = J1
aka = Jk
J'A»+|x = 0

(5)

Ij”x = 0
ax < b VieG\G
Ix < 0VieG\G,.
ax < b VYieG\G

‘ N (6)
Ix < 0VieGN\G,.
a e L]

K Ijk+l ’ Ijk+2 )" Jn

By Lemma 1.1, [aj],a

FRRTe
are linearly independent. Therefore, there exists a

unique A such that

n

k
¢c= D Aa, - X AL =
i=1

i=k+1
k )\ n /\
A g =S A g
; l ‘Az‘ g igil ' ‘/\i‘ s

where ¢ is the target vector. Note that | A; | > O for
any i (by Lemma 1.2 ii) and assumption iii) ). By

Lemma 1.2 i), X is the optimal solution of (7).

max c¢'x
N /\jl =
s. t ‘/\ ‘ (lj]x = it
J1
/\jk b
‘/\jk ‘ ;X = b
)\jlwl ] 0
‘/\ /k+1x
ka1 |
A I 0
. x <
10
ax<b VYieG\G
Ix<0 VYieG\G,. (7)

i), the

formulation (8) occurs is 1/2". That is, under the

By assumption probability  that
assumption that x satisfies formulation (6), the
probability that formulation (7 ) occurs is 1/2".
Therefore, under the assumption that X satisfies
formulation (6 ), the probability that X is the
optimal solution is 1/2". Since the probability that
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formulation (6) occurs is 1/2™, the probability that

a basic solution is the optimal solution is 1,/2"™".

/\j] =

‘/\/ ‘ ;X =0
1

/\fk <

‘/\/}L‘ ;X = 0
’ (8)

)\jkﬂ

‘ Ijk+l 0
Jret |

My 0
“— I x<O.

‘/\/” Jn

Lemma 2.1 shows that for different basic
solutions, the probabilities that they are the optimal
L/2me,
any fixed (A,b,c), we have the following theorem.
Theorem 2. 1

represents the number of nonzero components in the

solutions are the same, i. e. Considering

Let X be a random variable which

optimal solution, then

Ck Cn—k
X =k — m “n ,
reeEn e,
m C/c Cn,—k mn
E(X) = ko —"— =
( ) 172:6 CZH—n m + n,

where p(X = k) is the probability of X = k, E(X) is
the expectation of X, m is the number of the rows of
A, and n is the number of the columns of A.

Proof

represents the number of nonzero components in

Let X, be a random variable which

basic solutions. By Lemma 2.1, the probabilities
that any basic solutions are the optimal solutions are
the same. So the distribution of X, is the same as the
distribution of X. We will give the distribution of X
below.

Let x be a basic solution. The total number of

basic solutions is C" If there are k£ matrix

m+n*
constraints and (n — k) sign constraints among the
efficient constraints at X, the number of nonzero
components in x is k. There are C' cases to choose k
constraints to be regarded as efficient constraints

. . "
among the m matrix constraints. There are C| ™" cases

to choose (n — k) constraints to be regarded as
efficient constraints among the n sign constraints.

Therefore, the probability that X, = kis

c, et
P(X1 =k) = T
That is,
Ck Cnfk
X=k) = ="
r=h=e
& oC et mn
E(X)_g:)k . O

m+n

Since Lemma 2.1 and Theorem 2.1 hold for
any fixed (A,b,c), Lemma 2.1 and Theorem 2.1
also hold when we regard all the A whose dimensions

are m X n as a space.
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