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Abstract Uncertainty principle is one of the fundamental principles in quantum mechanics. In this work, we
derive two uncertainty equalities, which hold for all pairs of incompatible observables. We also obtain an
uncertainty relation in weak measurement which captures the limitations on the preparation of pre- and post-
selected ensemble and holds for two non-Hermitian operators corresponding to two non-commuting observables.
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Uncertainty principle is one of the basic tenets of
quantum mechanics. The initial spirit of uncertainty
principle was postulated by Heisenberg "', Kennard'”
first mathematically derived the Heisenberg uncertainty

relation . The most famous and popular form is the

Heisenberg-Robertson uncertainty relation

AA’AB = %<¢| [A,B]1 ¢) z, (1)

for any observables A and B and any state | s > ,
where the variance of an observable X in state | ¢ >
is defined as AX* = (| X’ ¢) = (1 X1 ) and
the commutator is defined as [A,B] = AB — BA. A

stronger extension of the Heisenberg-Robertson

]

’

uncertainty relation (1) was made by Schrodinger'*

which is generally formulated as
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AA’AB® = ;([A,BD ;
l 2
Loasn -anm |, @
where the anticommutator is defined as {A,B} = AB

+ BA , and (X) is defined as the expectation value
(| X1 o) for any operator X with respect to the
normalized state | i) .

However, the above two uncertainty relations
have the problem that they may be trivial even when
A and B are incompatible on the state | ¢) . In order
to correct this problem, Maccone and Pati '
presented two stronger uncertainty relations based on
the sum of variances. The first uncertainty
relation reads

AA +AB ==+ i{[A,B]) +
| (1l A+iBlyt)1?, (3)
which is valid for arbitrary states | " ) orthogonal to
the state of the system | ) , where the sign should
be chosen so that + i{([A,B]) (a real quantity) is

positive. The second uncertainty relation is
AA® + AB’ ;%| (i, ) A+BlLyg) 12 (4)

Here | iy ,) < (A +B - (A +B)) | ) is a state
orthogonal to | ¢) . Maccone and Pati also derived an

amended Heisenberg-Robertson uncertainty relation

ir%QABD

1 A B ’
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(5)

which is stronger than the Heisenberg-Robertson

AAAB =

uncertainty relation (1).

Recently, two stronger Schrodinger-like uncerta-
inty relations'®’ have been proved which go beyond the
Maccone and Pati’ s uncertainty relation. The new
relations provide stronger bounds whenever the
observables are incompatible on the state | ) . The
first uncertainty relation is

AA* + AB* = ([A,B]) + ({A,B}) =2(A)(B) |
H <yl A-e"Bly" > 1%, (6)
which is valid for arbitrary states | " ) orthogonal to
the state of the system | ) and stronger than the

Maccone and Pati’ s uncertainty relation (3). In

(6), ais a real constant. If ({A ,B}) —2{(A){B)

SiAB)D)
(TA.B1) ~20A) (B)

({A,B}) =2{(AY{B) <0, thena = T + arctan

- i{[A,B])
(1A B}) - 2(A)(B)

= 0, the relation (6) reduces to (3) . The second

> 0, then a = arctan

While ({A,B}) —=2(A)(B)

uncertainty relation is

AA*A B =
l 2 l 2
Lamn |+ [Lcam -

(=g 1l = Sy 17y
(7)
which is stronger than the Schrédinger uncertainty
relation (2).
These new state-dependent uncertainty relations
have some problem'”’ | but some state-independent

[8-9]

uncertainty relations are immune from the

drawback. Maccone and Pati’s uncertainty relations"”’
are still very important and have some generalizations.
Two variance-based

uncertainty equalities were

proved recently by Yao et al. """ on the trend of
stronger uncertainty relations’’, for all pairs of
incompatible observables A and B. Meanwhile, two
uncertainty relations in weak measurement were
derived by Pati and Wu'""' for variances of two non-
Hermitian operators corresponding to two noncommuting
observables.

In this work we derive and prove two
uncertainty equalities, which hold for all pairs of
incompatible observables A and B. We also give an
uncertainty relation in weak measurement for two
non-Hermitian operators corresponding to two non-

commuting observables.

1 Uncertainty equalities

In this section, we construct and prove two
uncertainty equalities, which imply the uncertainty
inequalities (6) and (7).

Uncertainty relation 1.
AA* + AB® =
I (TA,B]) + ({A,B}) -2(A)(B) |
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o ) L where {1 ), | ) )%\ | comprise an orthonormal
Y NI A =BG 1T (8) . ompree
~ complete basis in the d -dimensional Hilbert space.
-1 . . .
where {1 ¢), | 4, ), | comprise an orthonormal Proof To prove our uncertainty equality, let us

complete basis in the d -dimensional Hilbert space.

Proof To prove our uncertainty relation, let us

define the operators TI = I -1 y){(y | , A = A -
(AYI ,and B = B — (B)Iand the state | ¢) = (A —
¢” B) | ). We have
($p1 T ¢) = (gl (A-e " B) | (I-1¢)
(p1) 1 (A =e"B) 1 yg)
=yl (A-e"B)Y(A-e"B) I y)

= AA® + AB* —2Re(e" (g1 ABI ¢)). (9)
There exists 7 = — a so thate” (¢ | AB| ) is real,
and it can be written as | (| AB| ) | . we obtain

(1 (A=e“B)Y I TII (A—-e™B)1 )

= A 4 AB —21 (1 ABI ) |
= AA*> + AB® -1 {[A,B]) +
(1A,BY) =2{A)(B) | . (10)
Since II is the orthogonal complement to | ) (|
we can choose an arbitrary orthogonal decomposition

of the projector IT ,

M=ty 1, (11)

d-1

where {| ¢ >, 1 ¢ >} comprise an orthonormal
complete basis in the d -dimensional Hilbert space.

Whence, Eq. (10) can be rewritten as

d-1
Sl (A-e"B) 1y > 1
- d-1
=N 1 (gl A-e"Bly )1’
sl
= AA*> + AB® -1 {[A,B]) +
(1A,BY) =2CA)(B) I, (12)
which is equivalent to (8).
Uncertainty relation 2.
AA’AB® =

Lasn -y |

2

1
Lias)| s

1 d-1
-3

)

A iui is 2 N2
l|<¢|AA—e ABlw,,M )

(13)

define the operators I1 = I —| ) {4y | A=A -

(AYI', and B =8B - (B)I and the unnormalized

state = A—e”i e have
state | ) (AA AB)II/A.W‘h
(¢ 1 IL1 )
A . B
=<l/f|(ﬂ-e E)'U-'WW')'

A . B
(KZ__E KE)' W)

A . B. A
= (g (KZ”—G KE)(KZ'—

i B
e KE)I )

_ 9 _2R6(8i1<l/l| ABI ¢>),
AAAB

(14)

There exists 7 = — a so thate” (i | AB] W) is real,

and it can be written as | (| ABI )| . We obtain

A i B A —ia B
(gl (ZZT_‘B KE)' Il (KZ"—E KE)' W)

o 1 (I ABIy) |
=2-2 AIAB . (15)

Similarly, we choose the projector IT ,

H=Zl¢i><¢jl- (16)

Then Eq. (15) can be rewritten as
d-1 " -~
A i« B 1y g2
| | (— -€e“—) | |
3 G e
-1

_ A e B
_;lwlM eABIQ/;”M

| S([A,B]) + - (14,B]) = (A)(B) |
AAAB ’
()

=2-2

which is equivalent to (13).

The two uncertainty equalities (8) and (13)
hold for all pairs of incompatible observables. If we
retain only the term associated with | ) e {1
>f;1,€ in the summation and discard the rest, the

uncertainty equalities (8) and (13) reduce to the

uncertainty relations (6) and (7), respectively.
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2 Uncertainty relation in weak

measurement

12
21 weak

First proposed by Aharonov et al.
values are complex numbers so that one can define
the weak value of A using two states; an initial state
| ) called the pre-selection and a final state | ¢)

called the post-selection. The weak value of A has

the form
(A), = M (18)
(ol i)
For a given pre-selected and post-selected

ensemble, we define the operator A, as

1A
wo p ’
where II, =1 ¢){@ | andp =1 (@ | ¢) |>. The
11

A

(19)

non-Hermitian operator has many properties ' and

is very useful in duality quantum computer ™',
Here, we construct an uncertainty relation in
weak measurement for variances of two non-
Hermitian operators A, and B, corresponding to two
noncommuting observables A and B . The uncertainty
relation quantitatively expresses the impossibility of
jointly sharp preparation of pre- and post-selected
(PPS) quantum states | ) and | @) for the weak

measurement of incompatible observables.

Uncertainty relation 3.

AA® 4 AB =| %<¢| [A,B]1 o) +

%wl [ABI 1 @) —2(AN (B, )" I+

[ (pl A, —e“B, | )], (20)
which is valid for two non-Hermitian operators A, and
B, , where p is equivalent to | (@ | ) | .

Proof To prove this relation we define the variance

for any general ( non-Hermitian) operator X in a

state | ¢) which can be defined as in Refs. [ 15-16]

AX = (g1 (X = (O)X = (X)) 1y,

(21)

The variance of the non-Hermitian operation A, in

the quantum state | ¢4 > can be defined as

AAL = (gl (A, = (A)) (AL = (AD) 1 ),

(22)

where (A,) = (1 A | ¢) and (A]) = (g1 A}
) = (A, )" . AA2 can also be expressed as
A = (gl A AL ) = (il AT )

(pl AL (23)

Similarly, for Hermitian operator B , we can define

the operator

B, = —*. (24)

Then, the uncertainty for B can also be defined as
AB, = (¢l B B 1 y) =yl B, 1y
(w1 By, (25)
uncertainty weak

To prove our relation in

measurement, we introduce a general inequality

| C'lg)y —e™ D' Ly +k(Lg) -1 g)) |* =0,
(26)

where C' = A“ - <AZ> and D' = BL - <Bj¢> . By

expanding the square modulus, we have

AA> + AB> = - Ak - Bk + m, (27
w w ﬁ

where A =2(1 = Re[ (y1 ¢)]) , m=2Re[e"(y
1 ¢D' 1)), andB =2Re[ (y| (= C+e D) I

1&> ] . By choosing the value of & that maximizes the

right-hand-side of (27 ), namely & =- B/2A,
we get
B
AL + AB = . 28
AA, + AB; gt (28)

The above inequality can be rewritten as

At 4 ap 5 ReLWI (= Cre D) 1) I
2(1 =Re[ (g1 ¢)])

2Re[e (| CD" 1 ). (29)

Suppose | 1/;> = cosfl ) +e“singl y* ) , where

| ") is orthogonal to | ) . By taking the limit § —

0 , the state | (L> reduces to | ) and then the above
inequality can be reexpressed as
AA, + AB, =

Re[e®(y| (=A, +e"B,) 1 y") 1"+

2Re[ e (1 CD" 1 ) ]. (30)

There exists 7 = — a so thate” (| CD"| ) is real,

and it can be written as | (| CD"1 )| . Then the

second term becomes {Re[ e (| = A, + ¢ B, |

DRI

We can choose ¢ so that the term in
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square brackets is real and this term can be
expressed as| (| A, —e“ B, 1 ") 1> . Whence,
inequality (30) becomes
AAL + AB =1 (Yl A, —e“B, 1 ¢ )1+
21 {1 CD"1 ) I. (31)

The last term can be rewritten as

21{(CD")1 =1 {CD" +DC" + CD" - DC") |,
(32)
where
(cD" + DC) =
%«ol 4B @) = (A)(B, )" = (A,)"(B,),
(33)
and
(€D" - DC") =
%wl [A,B11 @) = (A0(B, )" + (4, )" (B,).
(34)
We combine Eqs. (33 ) and (34), Eq.
(32) becomes
21 (CcD") | =

Lo [ABI 1 g) +
14

;7<go| [ABI 1 @) —2(A)(B, )" | (35)

Combining Eqs. (32) and (35), we obtain the

uncertainty relation (20).

3 Conclusions

In this work, we derived two new uncertainty
equalities for the sum and product of variances of a
pair of incompatible observables, which hold for all
pairs of incompatible observables A and B . In fact,
one can obtain a series of inequalities by retaining 1
to (d —2) terms within the set {1 ) )2} . We
also derived an wuncertainty relation in weak
measurement for two non-Hermitian operators A, and
B, corresponding to two non-commuting observables

A and B. The uncertainty relation quantitatively

expresses the impossibility of jointly sharp preparation

of PPS quantum states 14 ) and |¢) for measuring

incompatible observables in weak measurement.
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