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Abstract
(Asmussen, Trans Am Math Soc, 1977, 231233 ), we obtain the law of the iterated logarithm of the

By the Berry-Esseen lemma and an important extension of the conditional Borel-Cantelli lemma

branching processes in varying environment under the condition that the second moment of the number of the
offspring of each individual of each generation is uniformly upper/lower bounded. Further more, the condition
is weaker than that of Gao( Gao, UCAS, Thesis 2011).
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The law of the iterated logarithm (abbr. LIL) of
the classical Galton-Watson process was firstly
proved by Heyde''' under the condition that the
2 + 8 moment of the process is finite. In the same
year, Heyde and Leslie'>’ again obtained the LIL
under the condition that the second moment is finite.

i ]
Later, Asmussen’' gave another proof via a very
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delicate truncation procedure and Kronecker lemma.
The proof of Huggins'*' is based on the Skorohod
embedding techniques and new properties of
Brownian motion and stopping times.

Gao>' proved the LIL of the super-critical
Galton-Watson processes in varying environment

satisfied that there is a uniform upper bound for the
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2 + 6 moment of the number of the offspring of each
individual of each generation. In addition, the
author pointed out a mistake in the proof of Theorem
1 in Heyde and Leslie >’ .

of the LIL of the classical Galton-Watson process in
[3]

Enlightened by the proof

Asmussen ", we obtain the LIL of the super-critical
Galton-Watson processes in varying environment
under the condition that the second moment has a

uniform upper bound and a uniform lower bound.

1 Main result

Let Z, = 1 and for alln = 1 | define

ZVL
X, ifZ, #0;
égu+l = ;g; ’
0, ifZ, =0,
where { X, .;n = 0,/ = 1} are independent and for

eachn = 0,{X, ,j = 1} have the same distribution
{p,(k),k e N} . p, (k) denotes the probability of k
offspring produced by an individual of the n’ th
generation and N is the set of non-negative integers.
Then { Z,,n = 0} is said to be a Galton-Watson
process in varying environment( GWVE) .

Let the generating functions of Z, and X, ; are
respectively f, (s) and ¢, (s) , and let m, and u, are

respectively their expectations. Then

() = do(d (-, (5))),

n-1 n-1
m, =, (1) = [T ¢'.(1) =[] w
1=0 i=0
n-1

From now on, we always assume that H My

It is known that { W, .

k=n

1,0 <m, <o0,¥Yn=0.

Z,/m,,n = 0} is a nonnegative martingale and
there exists a nonnegative random variable W so that

lim W = Wa.s. . Moreover, if sup, B(W?) <

n— a0 n

0

—_ 2 —_ —_—
o, then EW =1 and ¢°: = Var(W) = 2’1:0
8/(u: m,) < oo. These results can be found in

Fearn'®.

Lemma 1.1 ( Decomposition Lemma 1)
Let {Z, ,n = 0} be a GWVE, then Yn = 0,

r = 1 we have

Zu
N (z) -m,,), ifz, #0;
j=1

0, ifz =0,

where Z' represents the number of r’ th generation

n,r

offspring of the;j ’ th of the Z, individuals of the n ’ th
generation, and %Zi’), ,j = 1} are independent and
identically distributed and independent of Z .

Furthermore ,

n+r-1

nlu,r: = Hﬁ( 2ZEQ ) = I_I lp/,

j=n
n+r—1 62
2 _ ()] _ 2 J
o, = Var(Z)) = (m, )7 Y 5
JEn My M,

Proof See Ref.[5].
Remark 1.1 7Y =X

n,1
m,, = I,U'(Z)J = Var(Zr)and O'i,] = Si
Lemma 1. 2 ( Decomposition Lemma 2)

Let {Z,,n = 0} be a GWVE, then Yn = 0

njr Mo, = M ,m, = W,,

Zn
WY -1 ifZ #0;
W7 = Z( \ ), ifZ, ;

n n

0 ifz =0,

where { W j = 1} are independent and identically

distributed and independent of Z, . If

o 52
27{71<00,Vn20, (1)
5 J
8 )
then
® s
E(WY”) =1and ¢>: = Var(W) = 2 -
oo m,

Proof See Ref.[5].
Remark 1.2 W' = W, o, = ¢’ = Var(W) =

©

z 5?/(,%? m;) .

izo
Now assume that there exist four constants ,3,
7,y with 8 > a > 1 and 7 > y > 0 such that

Vn=0

a<p, <By <5 <1, (2)
| VAR <, (3)
n=0 ot >e"

Y[ Ao <m )

n=0

where 1 < ¢ < o'

, and F is the distribution of Z.”

- m,, in Decomposition Lemma 1, and G, is the

distribution of W' — 1 in Decomposition Lemma 2.
For any givenr = 1 , define

Y . =727 - m

n,j

Y’n,j: = Yn,j[(l Yn,jl = A/ mn) ,

n,ro
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V-' :W<j>—l,

V'w.; = Vn'j](| V.,I< Jm,).
Theorem 1.1 Let {Z, ,n = 0} be a GWVE.
Suppose thatp, (0) =0,¥Vn=0.
(2), (3), and (4) are satisfied, and

If the conditions

Var(Y', ;)/Var(Y, ) =1, asn—ow, (5)
Var(V', ;)/Var(V, ) =1, asn—ow, (6)
then for all r=1, with probability one we have
lim sup(lim inf) — — Ty an =1(-1),
oo noeo (20,,Z,1logn)
(7)

m,W - Z,
(20, Z,logn )"

lim sup(lim inf) =1(-1).

(8)
Remark 1.3 Sincep,(0) >0,V n =0, one has
W >0a.s., hence Z, = O(m,)a.s..
Remark 1. 4
Eq. (1) from the condition (2). According Remark

We can obtain o" < m, < 8" and

1.3, we know that log Z, — nlogm — logW a.s.,
which means loglog Z, /logn — la. s. , sologn can be
substituted by loglog Z, in Eq. (7) and Eq. (8).
Remark 1.5 Since

[ iy PdE () <
Lyl >¢n

1 +
Con gy 1ol Y1) R (),
[, rorden <
1 +
vk IPEAIC IR I KACOR

where 0 < § < 1, we can get the conditions (3)
and (4) under the following conditions (9 ) and

(10) are satisfied ;
supf I y1%(log! yI )”‘de"(y) < o,
220 JyeR

(9)

sup I yl12(logl y1 )'™d G, (y) < (10)
R

n=0Jye

However (9) and (10) are weaker than (1.14) in
Ref. [5].

Remark 1.6 The condition (5) holds naturally for
a classical super-critical Galton-Watson branching

process { Z,,n = 0} with E( Z,logZ,) < .

no

Moreover, if there exists a random variable ¥ e

L’(Q,7 ,P)sothat! Y, | <Y, then Eq. (5)
can be deduced. Since z P(LY, | >, /m) <

oo, we almost surely have

Yo, - Yn,l —0 and (Y’n,l )2 - (Y

n,

. )2 —0.
By the dominated convergence theorem, we have
Var(Y', ;) - Var( Y, )
= Var(Y', ;) = Var(Y

hence the condition (5) holds. For Eq. (6) we

.) —0as.,

have similar results.

2 Basic lemmas

Lemma 2.1 Let {.# ,n = 0| be an increasing

sequence of ¢ -algebras and {T,,n = 0} a (not

necessarily adapted) random variable sequence such

that

N A= supl P(T, <yl 7) -D(y) | <o,
w=0 n=0 YeR

where ® (y) is the distribution function of N(0,1) .
Then
T

n

lim sup <1a.s.,

e (2logn )'?
with the inequality replaced by equality if T, is
measurable with respect to .7, ,, for some 1<k < oo.
Proof See Ref.[3].

Lemma 2.2 (Berry-Esseen Lemma)
Let {X,,n = 1| be an independent and identically

distributed random variable sequence such that EX,

=0,EX. = 0" >0and EIX,] * < . Denote S, ;
Z” X, . Then
k=1

ElX,°
o n

where ®(x) is the standard normal distribution and

<A

sup

xeR

]P’( S, <x)—(l)(x)
on

A is a positive constant that is called the Berry-
Esseen constant.

Proof See Ref.[7], P124.

Lemma 2.3 (Kronecker Lemma)

Let {b,} be an increasing sequence of positive real

numbers with b, — oo, and let {x, | be a sequence of

= x(finite) . Then

n

©
real numbers with 2 X
0=

n

Lz byx;, —0,

bn Jj=1
Proof See Ref.[7], P63.

as n — oo.
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on r such that
3 Proof of Theorem 1.1 p
_ C, < lim inf < lim supi C,. (14)
Proof Denote .7 : = ¢(Z,) and .7 : = o{ X, ; noo S oo

n

O<k<n-1,j=1{. Then Yn = 1,.7 is the

n

o — algebra generated by the individuals of previous

n — 1 generations. First prove Eq. (7). We only
need to show
1. Zn+r - mn,r Zn 1 (11)
im su = a.s. .
vl 3 (2 G'i,, Z logn )2
In fact, if Eq. (11) is true, letZ =-Z,,n=0,
then we have
[ J— Z”
Z-m, Z =Y (=Y
j=1
Repeating the proof of Eq. (11) for { =V, . ,n =0,
j = 1! we obtain
e Tmew 7
im su = a.s. ,
ot (2 0'2,, Z logn )"
which in fact is
wee =My, 2,
lim inf > : — =-1 a.s..
e (20, Z,logn )"
Define
Yn,j: = nj EY,,,,,"
ZVl
S:=Y Y,
w Var(S | .7) = Z Var(Y,)
T,: =8/a.
By a standard moment inequality,
E(1Y,1°) <
EC(IY, 17) +3B(Y, 1) (EIY 1)+

3E(Y, 1) E(YZ,) +EB(Y', ) 3)

3y _ 3
) —sjﬂsﬁlyl dF,(y).

Letting A be the Berry — Essen constant, by the

< 8E(lY", )

Berry-Esseen Lemma we have

A,: =supl P(T, <yl .7%) - ®P(y) |

n
yeR

Z!l
< 84

~ 3

ﬁ)‘lsml }/| dF:,(y)- (13)

n

By the condition (2) we can deduce that there exist
a uniform upper and a uniform lower bound only
dependent on r for (T?w . So there exist positive and

finite constants C, and C, which are only dependent

n a)ll

From Remark 1.3 we know that Z, = O(m,)a.s. ,

=0(m,)a.s.
and Eq. (14), we have

. 3 -
> jm\mlyl dF, (y)

n=0

hence a/)\;2 . Combining with Eq. (13)

‘ -

o

( ELWS/' yl1'd Fn(y))+

n j=1

© Nz 3
2:6 ﬁj{z+1£—l<\)\$jl y| dF”(y))
3 )

=0

0 Mp

n=0;=/n41

20<§/f>"+zj

n=0

6'48

0

—_—

el

Iy 12dF, (y) +

™M=

N

\/;J/’I<v</

—j/lw/lylzan(y))

.

ﬁ

Ly 17dF,(y),

(15)

where C; > 0 is a constant. By using the condition
(3), Eq. (13) and Eq. (15) we have 2 A, <o

a.s. . Again applying Lemma 2. 1 one eventually

has

lim sup . l,a.s..

<
e (2log n)'?

In addition, since T, is measurable with respect to

7., , the above inequality should be replaced by
equality.
Z, Z,
= YV, = DAY +Y,  -Y +REY

j=1 Jj=1

Thus it suffices to verify

S

lim sup - = lim sup - .
nowo (2 o'i_, Z logn )2 nom  (2logn )2

Noting that

S T Var( Y/ ) 172
" _ 0 ( nii ) N
(2 a'i'r Z logn )" (2logn )'"? o,
Z Z

ORI

(2 Ui,, Z logn )]/2

2]"1 EY',

(20- Z logn )"’

it suffices to verify that

Var(Y' )/a'i_r—>l, (16)

n,j
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F2
Zn '
zj:l % Yn,j - Y n‘j}
(Zlogn)]/2 -0, (17)
ZIX
2],:1 EY',,
(Zlogn)]/zﬁo' (18)

By the condition (5) we know that Eq. (16) holds.
For Eq. (17) and Eq. (18), by Kronecer Lemma it

only needs to prove that

o0 Z’I
YL Yy, -y, <w, (19)
w=0 /m, logn =i i )
o0 ZH
L S Ry, <o (20)
=0 /m, logn j=1
Since
| BY', | =1 B(Y',, -Y,,) |
<E Y, -V, I

=Bl Y,, 110 Y, | > /m,)
:f Lyl dF, (y),
Iyl > /m,

and noting that Z, = O(m,)a. s. , it suffices for Eq.
(19) and Eq. (20) that

S [, _IyldF() <
2 Togl > /5

(21)
(for the first, taking the mean). And Eq. (21)

certainly holds since even

% /7]

Lyl dF, (y)

yb > /m,

=

[, R
n=0J20 > /mn

< zoﬁ‘” yI2dF (y) < oo
Therefore, Eq. (17) and Eq. (18) hold.

In order to prove Eq. (8), recall V, ;. = W
- 1. Repeating the proof of Eq. (11) and noting
that there doesn’ t exist 1 <r < o so that T, is

measurable with respect to .7, we have

n+r 9

m W -7
lim sup 5 —m < las. (22)
e (20, Z,logn )

Note that
m, (W = W,) M (W= W,.0)
(20, Z,logn )" "2 oo, 7, Jog(n + k) '
o Zdos(n + BN 1

1
o’ Z, logn M,

172

mrz+A(WrL+k - Wﬂ) (0-1211{) L
(2 G'i,k Z logn )1/2 2 m, 1(‘

n

So the lim sup part is at least

— lim (0'12:»,/; Z,,+A.10g (n + k))l/z L

+
2
- m
oo o, Z logn nk
2 12
MEDRNE
- .
oo\ o m, .

n

Again since the first item of the above expression is

smaller than Ca™*? and the second item

2
Tk 1

2 2 =
g, (mu,/.-)

(505 )

2 2
j=n My mn,/'—n j=n M mrr,j—n n,k

"and C > 0 is a constant, the lim

where b, , < Ca”
sup part of Eq. (8) is at least 1 as k — oo. The lim
inf part of Eq. (8) can be proved in the same way as

for Eq. (12). O
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