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Abstract The last decade has witnessed an explosion of interest in golf, and the number of golf players has
increased significantly. Therefore, how to train a golfer to make a proper and accurate golf swing has attracted
extensive research attentions. Among these researches the most important step is swing capture and
reconstruction. Thus far, restricted to the development of present depth imaging devices, of which the most
famous one is Kinect, the initial captured swing movement may not be acceptable enough due to occlusions
and mixing up of body parts. To restore motion information from self-occlusion and reconstruct 3D golf swing
from low resolution depth data, a dynamic Bayesian network ( DBN) model based golf swing reconstruction
algorithm is proposed to increase the capture accuracy which integrates the spatial relationship among joints
and their movement dynamics. Experimental results have proved that the proposed algorithm can achieve
comparable reconstruction accuracy to the commercial optical motion caption ( OMocap) system and better
performance than state of art modification algorithms using depth information.
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Golf is one of the most developed and popular
sports. The number of active golf players is
estimated at 50 million and golf course development
has become the fastest growing property sector in the
world. However, how to train a golfer to make a
proper and accurate golf swing is critical to the

"', Previously,

success of the golf training course
the training was usually guided by professional
golfers, which involved extensive human recourse.
In recent years, there was a trend to use standard
swing procedures for golf training, which considered
many important parameters of swing, such as club

[2-5] ]

head trace , swing plane'®’, hub path'”’, leg

movement'*’ , and even wrist angle[g'm:. However,
among these parameters, the key is to accurately
capture the swing movement. For this purpose, two
kinds of motion capture ( Mocap) systems are mainly

[1]

used in recent years' ' : optical Mocap ( OMocap )

12-15 .
1) and wearable micro-sensors base Mocap

system
system ( MMocap ) "'**”. The OMocap systems
require to attach reflective markers on golfer’ s body
segment, and then positions of the marker are
obtained via multiple high-speed cameras around the
golfer. The MMocap systems also require to place
micro-sensors on golfer’ s body segments for motion
reconstruction. Although these two kinds of Mocap
systems have been used successfully in many
applications, both systems require the golfer to wear
some extra devices, which are intrusive and make
the golfer uncomfortable during the swing movement.

Recently, newly introduced Microsoft Kinect,
which is a contactless motion capture device using
an RGB-D sensor providing synchronized color and
depth images, has shown some potential to overcome
the pitfalls of the traditional Mocap systems'*''. The
main challenge for the Kinect is its poor performance
due to occlusions and mixing up of body parts' ™.

To tackle this problem and make it applicable for the

golf swing analysis, some ad-hoc solutions to
improve the estimation accuracy have been proposed

224 ysed the

so far. For example, Zhang et al."
Kinect to capture the 3D skeleton coordination of a
golfer who was performing swing, and then used
serial correlation model to score and recognize grade
of golf swing. Lin et al.'”  utilized the Kinect to
capture the swing motion, and automatically
identified the 6 common mistakes on swing motion.
Shen et al. "**’ tried to tackle the occlusion problem
and presented an exemple-based method to learn and
correct the initially estimated poses from Kinect.
Although these methods made some progress to
improve the wrongly recognized swing posture from
Kinect, the challenge is still not very well solved yet
due to the ignorance of motion similarity contained in
the swing dynamics.

However, there are similarities among swing
movements performed by the same person: 1)
spatial similarity ( the relative movements among
joints during swing movement are similar if the
swings are performed without external interference )
and 2) temporal similarity (the swing periods are
similar ). These similarities, if applied properly,
can be used to further improve the accuracy of
motion information against self-occlusion and
reconstruct 3D golf swing from low resolution depth
image sequences. In this paper, due to the
advantage of fusing spatial and temporal information,
a dynamic Bayesian network ( DBN) model-based
golf swing reconstruction algorithm for Kinect is
proposed. The algorithm integrates the spatial
relationship among joints and their movement
dynamics. The DBN model is trained using actual
golf swing movement data. The joint positions
generated from Kinect are optimized by the model.

The reconstruction of golf swing is performed using

these optimized positions. We have compared our
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position outputs with the commercial OMocap system
MAT-T"*" and the method proposed in Ref. [ 26 ].
The good performance results have shown that the
proposed algorithm achieves comparable tracking
accuracy to the MAT-T system and improves the
methods

Kinect outputs much more than the

mentioned in Refs. [22] and [26].

1 DBN model-based swing movement
reconstruction

Generally, the human body can be regarded as
a skeleton model shown in Fig.1 (a). The skeleton
model contains five chains. Each chain is a set of
segments connected by joints. The joint positions are
swing procedure

key elements to the whole

reconstruction. The segments in a chain are
considered as rigid bodies. To reconstruct the golf
swing accurately, the exact positions of the key

joints should be acquired.

neck

l

Teft right right
leftknee shouldeJ head sho%xlde;‘ kr%ee
Teft right .
left foot e alboss klght foot

left hand fight

(a) (b)
Fig. 1 Human skeleton model (a) and

hierarchical structure (b)

The above golfer model includes 15 key joints
head
shoulders, left and right elbows, left and right

include ; neck, torso, left and right
hands, left and right hips, left and right knees, and
left and right feet. Their position information during
time represents the whole body movement precisely.
These 15 key joints construct a hierarchical structure
of a golfer containing the five serial chains, which is
shown in Fig. 1 (b). In the hierarchical structure,
the torso joint is considered as the root of all the
chains. To construct our DBN model, the positions

of joints are focused on in one arbitrary chain. It can

be derived similarly in other four chains by using the

DBN model of the chosen chain.
1.1 Model representation

In the DBN model, 5 symbols are used to
represent the states and observations;

s+ The relative position of the i, joint in chain
in its parent joint’ s coordinate system (JCS) at time
t.

X!: The absolute position of the i, joint in chain
in global coordinate system (GCS) at time .

Y': The position observation of the i, joint in
chain in GCS at time ¢.

n: The order number describing the dynamics
of s\ in the whole swing.

m ; The number of joints in the chain.

The exact structure of the DBN model is shown
in Fig. 2. The static structure of joint chain and the
shown,

dynamic structure of one joint are

respectively.  During model construction, the
dynamics of the relative position of one joint could
be first-order or multi-order Markov. The precise
is determined through practice.

~
- — =<

“ ”
order number “n
— -
~
— — —-A— - .

ERITY:
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Fig. 2 DBN model of one arbitrary chain of human

model; static structure (a) and dynamic structure (b)

The purpose of the DBN model is to estimate
more precise positions of the joints in GCS during
the whole swing, i. e., to find the most probable
position of X! by calculating the posterior probability
Pr(X!1 Y!"). Based on the structure of the proposed
DBN model, a preliminary iteration sequence is
raised to solve the estimation problem

X?,"',XT,XQ,'“,XZM,-"'X?,"',X:". (1)
This means reconstructing the swing of the golfer
accurately, and every joint’ s position in GCS from
every frame should be acquired precisely. According

to (1), the position estimation results should be

acquired sequentially, following the chain order in
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one frame, and in the next frame the same order
should be followed. The position estimation X| is
related to its parent X!”' in the the same frame and
its relative position s'_, in the previous frame.
1.2 Model inference

As discussion above, the key to acquire ment of
precise position of X! is to calculate the posterior
probabilityPr( X! | Y(l):) , which is related to Pr( X!
I ¥77) andPr(s,, | Y!"'_|). This could be derived
step by step from the joint probability distribution
which can be written as
Pr(syy, X7,V =
Pr(sy, XV YRS Pr(sy XL YLD

Pr(sy, X0 Y

Pr(X, I X7 s Pr(s) s, ) Pr(Y, 1 X)), (2)
Then, by doing parameter

elimination, the
probability contains only s’ and X! and can be derived
Pr(s, X, V) =

Pr(Y | X})
Pr( ¥V
[T PGl Y PG s, ) . (3)

i
St-1:t-n

From (3), the posterior probability Pr( X! | Y?z)
and Pr(s, | ¥]") can be derived

Pr(X 1 Y/) = C-Pr(Y, 1 X)) +

T PeCX V) Y P X ) -

X! o

t

[ (X YD) Pr(X X ) ]
xi-1

> Pr(s YR Pr(si s y,L,) (4)

i
Si-1:t-n

Pr(s, | Y1) =
Co 3 Pr(s, | Y )Pr(s, s, ,,)

gi
St=1:t-n

S Pr(Y LX) Y Pr(X VT Pr(X X s
Xi xi-1

(5)
Pr( YT Pr(YL)
Pr( Y0 Pr( Y

considered as a constant. Recalling the preliminary

In (4) and (5), C = n be

iteration sequence to estimate X: in (1) and
considering (4) and (5), a modified iteration
sequence is proposed to estimate every joint position

in chain at time ¢:

SO XO e Sm Xm. (6)

1A TS, Ay
1.3 Conditional probability distribution
(CPD) definition
The calculations of Pr(X, | ¥}7)) and Pr(s, |
Y'") need three key elements: spatial relationship
Pr(X! | X' s!), temporal relationship Pr(s: |
$i_1.4-.) » and likelihood Pr( Y. | X!). For defining
and training simplicity, all these three elements are
assumed to follow the normal distribution. After
definition, the parameters in these three elements
can be learned before reconstruction by training
previous motion data gained from the same golfer.
1.3.1 Spatial relationship
According to the human skeleton model, the
joint positions are the only elements to be discussed.
Therefore the states s: and X' are both joint positions.
The difference between the two kinds of states is that
si is the position of one joint in its parent JCS while
X! is the position in GCS. Apparently, X' can be
gained by integrating s\ and X!”', according to the
chain structure. The spatial relationship between
parent and child joints can be written as
Pr(X, 1 X" ,s) = N(X' +5,,0).  (7)
In (7), Q, is the process noise from previous
training sets and their ground truths of one golfer.
1.3.2 Likelihood
The observation Y! is generated from state X'.
Since they are all measured in GCS and only have
measurement errors, the likelihood can be written as
Pr(Y: I X!) = N(X',R,). (8)
1.3.3 Temporal relationship
For each golfer, the motion of joints should be
unique and repeatable if the swing is performed
again by the same person. This assumption is taken
into consideration to train different motion models of
each joint for different golfers. The motion of joints
is only considered in their parents’ JCS to eliminate
the affection of their parent joints and acquire
“pure” motion models. Each joint can acquire a
motion model by training previous motion data.
Following the normal distribution,

the temporal

relationship of one joint can be described as
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Pr(sfl sj—];t—/)) = N(Aj—l [Sf_l"”»sf_,,]T,Ef_l)~

(9)
In (9), the matrices Af_, and Ej_] contain the
parameters which need to be trained to get from

i i

s tos,.

t=1:t-n

2 Experiments and discussion

2.1 Setup

The MAT-T system and the algorithms in Refs.
[22,26 ] are used to evaluate the reconstruction
performance of the proposed algorithm. The
placement of the 6 cameras and the application
environment are shown in Fig. 3, while the Kinect
is put in front of the golfer at a distance of about 2. 5
m with a height of about 1 m from the ground to
make sure the whole swing motion can be captured.
The joint position observations are provided by

28] .
(8] These functions can

OpenNI skeleton functions
generate preliminary joint positions from the RGB-D

information.

Fig. 3 The application environment
of the MAT-T system

Five golfers (4 males and 1 female) were
participated in our experiment. Each of them
repeated 6 swings ( including stance, backswing,
downswing, and follow-through ).  During the
experiment of one golfer, all the 6 swings are used as
testing set by turn. While 1 swing is testing set, the
other 5 swings are training sets to generate “ prior
knowledge” of the DBN model. This ensures that
every swing can have a corresponding reconstruction
result. The two kinds of devices (i. e. 6 cameras
MAT-T system and Kinect )

capture the swing

synchronously. The sampling rate of the cameras from

MAT-T system is 180 Hz, while the Kinect is 30 Hz.

To illustrate the feasibility of our algorithm, the
joints and body segments which have the most
significant movements or rotations were chosen. In
our implementation, we chose the hand arms to
evaluate the performance of the proposed algorithm.
The shoulder width (SW ) and arm lengths ( left
upper arm (LU), left lower arm (LL), right upper
arm (RU), and right lower arm ( RL)) were also
taken into consideration.

The length of above 5 body parts can be
acquired easily. By comparing with outputs of MAT-
T system, we calculate the error ratio e between our
outputs and MAT-T system outputs:
-t

.
In (10), L is the body part length from MAT-T

(10)

e

system, while L is the body part length from our
model.

Similar to the body part length comparison, the
joint position difference between two kinds of outputs
is calculated. To evaluate the difference, as
mentioned in Ref. [ 26 ], the mean value of the sum
of joint errors (msJE) and the mean value of msJE

(mmsJE) are calculated,

, (11)

mmsJE = L= . (12)

In (11) and (12), X! is the position of joint i at

time ¢ from MAT-T, and )?ﬁ is from our model. N is
the number of joints used to represent golfer (in our
experiment N =15). T represents the swing period,
which equals the frame number Kinect captured
during the whole swing.
2.2 Order number selection

Since the proposed model is multi-order DBN,
a proper order number should be determined before
the experiment. To evaluate the model performance,

i. e., to quantify the average accuracy on the whole
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5 testing data, the msJE is calculated and shown in
Fig.4. The order number rises from 1 to 7, which
causes the msJE to drop first and rise when the order
number is above 5. For economizing training and
calculating consumption, other order numbers are

not considered. Apparently, the order number of our

model is chosen to be 5.

450 . : . ; . . ;

msJE/mm

1 2 3 4 5 6 7
order
Fig. 4 Variation of msJE when the

order of model rises

2.3 Computation consumption

The proposed DBN model is constructed and
trained using the BNT ( Bayesian network toolbox )
in Matlab ( R2011b ).

The joint positions are

800 T T

modified offline with a speed of 10 fps (CPU; i5 -
2400 3.1 GHz).
2.4 Comparison with MAT-T

The hand position outputs of our algorithm, the
MAT-T system, and the original Kinect are shown in
Fig. 5. Because the joint moves in 3D space, the
three components (x, y, and depth) of positions are
shown.

In Fig. 5, the outputs of the former two kinds of
results are only slightly different. In general, our
algorithm’ s performance is comparable with MAT-T
in acquiring joints’ positions. However, the cost of
a Kinect is much cheaper than any existing
commercial OMocap, including the MAT-T system.
The main difference between the former two kinds of
outputs is in depth component. The difference is a
bit notable in follow-through stage. Although the
DBN model improves the original Kinect outputs,
the original hands’ depth outputs are very unstable
when severe occlusion and rapid movement occur.
These outputs will definitely affect the performance

of the model.

——MAT-T -+~ our model -+ - original Kinect
T

600
400
200
0
-200
-400

Xx/mm

depth/mm

0.1 0.2 0.3 0.4

I |
0.5 0.6 0.7 0.8 0.9 1

normalized swing period

Fig. 5 Comparison of hand position outputs

The mentioned 5 body parts are chosen in the
comparison. The results of comparison are shown in
Table 1. The 5 body parts all have mean values of
the whole swing procedure.

Compared with the MAT-T system, our model

do have certain errors in the outputs. Moreover,
some body part’ s errors are significant (larger than
10% ).

performance. In the whole swing procedure, the

These errors do not always mean bad

skins of shoulders move more severely than any other
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body segments, because the shoulder joints rotate
most rapidly. Markers may change their positions
relative to their corresponding body segments due to

. 29
skin movement'®’ .

If the shoulder markers change
positions, the outputs of the MAT-T system will
fluctuate and this may cause the difference. The
shoulder widths (SWs) of five golfers are shown in
Fig. 6. The results are gained by our model, the
MAT-T system, and original Kinect output.

In normal condition, the shoulder width of each
golfer should keep constant during swing, because
the body segments are rigid. In Fig. 6, the shoulder
width results of the MAT-T system are not constant.
The main reason is that the shoulder markers have
changed their positions due to severe skin
movements. The original Kinect outputs vary more
severely due to the occlusion of shoulder joints.
With the help of the DBN model, the outputs of our
algorithm show more robustness than the other two
kinds of results. There are some differences between
the outputs of our model and the MAT-T system, but
the feasibility of our algorithm is unquestionable.
With the development of better capture device

(better than Kinect but not as expensive as the

MAT-T) , there is no doubt that the performance will

300

be better.

Table 1 Length comparison among body parts

MAT-T/ our model/
body part e/%
mm mm
SW 235.458 4 265.052 1 12.57
LU 250.218 6 228.1173 8.83
Golfer 1 LL 234.1757 247.2712 5.59
RU 250.218 9 233.607 2 6. 64
RL 234.1752 252.2712 7.73
SW 246.8018 232.900 3 5.63
LU 259.7177 248.654 5 4.26
Golfer 2 LL 243.066 0 248. 6550 2.30
RU 259.717 6 274.476 3 5.68
RL 243.065 1 254.476 6 4.69
SW 269.044 9 305.3614 13.50
LU 303.933 4 279.8513 7.92
Golfer 3 LL 284.447 4 272.659 4 4. 14
RU 303.933 6 273.988 4 9.85
RL 284.4457 302.1223 6.21
SW 275.8920 283.776 2 2.86
LU 291.777 6 279.8572 4.09
Golfer 4 LL 273.0707 284.8576 4.31
RU 291.7773 281.474 3 3.53
RL 273.069 7 281.473 5 3.08
SW 274.379 1 281.7759 2.70
LU 297.5267 289.945 1 2.54
Golfer 5 LL 278.450 2 259.1230 6.94
RU 297.526 2 291.8557 1.91
RL 278.449 1 275. 661 1 1. 00

— our model
T T

200 F

100
300

200
100

400
300

200

100
500

0 I | ! I

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
500 T T T T —__ T T T ]

0 I | | | | I T I |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

normalized swing period

Fig. 6 The shoulder widths of five golfers during whole swing

2.5 Comparison with other algorithms
In order to show the superiority of our algorithm

to the state of art Kinect based joint modification

algorithms, the algorithm in Ref. [22] and the RFR
algorithm in Ref. [ 26 ] are chosen. The reasons why

these algorithms are chosen as our opponent are two.
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One is that though the rotation of golfer is limited,
the test motions are golf swing and the other is that
they provide comparable results with OMocap
systems.

As mentioned above, the msJE was calculated.
Because the numbers of the selected joints are
different (15 in ours and 20 in the other two), a
more precise value, the mean value of msJE
(mmsJE ), is also calculated. The mmsJE is the
mean joint error of one joint during the whole swing.
These two groups of values are shown in Table 2.
The comparison shows that both the three algorithms
can improve the Kinect performance but our

algorithm performs much better.

Table 2 Comparison of msJE and mmsJE

msJE/mm mmsJE/mm
original 2071.6 103. 58 (20 joints)
RFR algorithm 1575.7 78.79 (20 joints)
system in Ref. [22] 1452.0 72.60(20 joints)
our algorithm 233.65 15.58 (15 joints)

By comparing the outputs of our model, the
MAT-T system, and two other algorithms, We find
that our algorithm works well with high robustness
against severe joint occlusion and improves the
Kinect performance. The outputs of our model are
MAT-T which

illustrates the feasibility and effectiveness of the

comparable with the system,
proposed golf swing reconstruction algorithm. The
comparison between our algorithm and two other
algorithms shows that the mmsJE of our outputs is
much lower. Moreover, our training and testing sets

are all real golf swings without any limitation.

3 Conclusion and future work

A golf swing reconstruction algorithm is
proposed based on Kinect and a full-body DBN
model. The experiments have shown that it can
reconstruct the golf swing with good quality.
Although there are slight differences compared with
the MAT-T system, the accuracy of the proposed
algorithm will increase with the development of
hardware and rise of sampling rate.

Our future work will be to incorporate the club

head into the model and analysis of kinematic
parameters generated by the model. Reconstruction
and analysis of other regular motion using Kinect

with our algorithm is also under consideration.
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