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Abstract

Two kinds of full implicit numerical schemes for stochastic differential equations in the

Ito sense are given via construction of the numerical methods for the equivalent stochastic differential
equations in the sense of Stratonovich and Backward-Tto. This approach could be applied to the
stochastic differential equations with one noise, and we prove that the two methods which are
generated by the equivalent stochastic differential equations are of mean-square order 1.

Key words

stochastic differential equations; full implicit numerical schemes; stochastic

differential equations in the Ito sense; stochastic differential equations in the Stratonovich sense

CLC number:0241.8 Document code: A doi:10. 7523/j. issn. 2095-6134. 2016. 03. 004
wA—TERENBEINMS AENERERX
(HP R} 2 B R 2 B B a2 B, db st 100049)

B OE i Lo AWML S 7 2 38 F M B Stratonovich B Av i 5 To B AL 4 77 %2,
4 2 5 & Stratonovich & Fu ) J5 Tto B LB 7 AT AW T Ap 2 R AL B E A K. X

FAHBEERAEATE - NRF A7, B3 7 1 M lksom.

K

Consider the numerical approximations for
stochastic differential equations ( SDEs) in the Tto
sense as follows

{dX =a(t,X)dt + b(t,X)dW (1), (1)

X(t,) = X,,

where X, a(t,x',---,x"), b(t,x',---,x") are n-

MALM 7 s 2R R AR o B ALH 4 F 12 Stratonovich A M AL 2 77 £

dimensional column-vectors and W () is a standard
Wiener process. In addition, we suppose that the
coefficients a(t,x' ,+---,x") and b(t,x",---,x") are
sufficiently smooth functions that guarantee the
existence and the uniqueness of the solution in the

interval [¢,,t, + T] (see Refs. [1-2] for details).
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Let X(t3ty,%,0), t, <t <1, +T, be the solution of
the SDE (1) where w is an elementary event.
Moreover, we denote by X,, k = 0,--- N, t,., —t,
= h, ty =1t, + T, the numerical method for (1)
based on the one-step approximation X = )?(l + h;
L,x) .

As is known in Refs. [ 3-6 ], there are many
kinds of numerical schemes for the SDE (1).
However, the construction of these approximations are
usually based on the SDEs in the Tto sense. Hence, it
is meaningful to investigate whether we could

construct the methods by using their equivalent SDEs

in the sense of Stratonovich and Backward-Ito .
1 Full implicit schemes

1.1 Equivalent equations in the sense of

Stratonovich and Backward-Ito
As s in Refs. [ 12, 56 ], the

equivalent equation with respect to the SDE (1) in

known

the sense of Stratonovich is as follows:

1 9b

X = ((a _7?,)(;,)())& Fb(1,X)odW (1),

(2)

where X(¢,) = X, and %b is the matrix with entry
x

b : . . .
- at the intersection of the ith row and jth column.
Jx

In addition, we also require that the column vectors

Z—b satisfy a uniform Lipschitz condition with respect
x

to x e R".

Based on the relationship between the Ito
integral and the Stratonovich integral, we can obtain
the SDE (2). Analogously, we can define another
stochastic integral, Backward-Ito integral, and get
the equivalent equation of SDE (1) in the sense of
Backward-Tto . Let (Q,.7) be a measure space with
the probability P and .7 be the o -algebra generated
by  the motions

n -dimensional Brownian

. We denote by V(S,T) the class

of functions
f(t’w>:[0’w) X QHR )
such that

1) (t,w) > f(t,w) is B x .7-measurable, where B

denotes the Borel o -algebra on [0, ) ;
2) f(t,w) is .7 -adapted and E[ ff(g’w )2(10] < .

Furthermore, let L* ( P) be a Hilbert space with
the following inner product

(X,Y) 2py: = E[X - Y];X,Y € L*(P).
Definition 1.1 Suppose thatf € V(0,T) and t —
f(t,w) s Then the
Backward-Ito integral of f is defined by

continuous for a.e.w.

[fee0) = aw(e) = tim ¥ £t @) A W,

whenever the limit exists in L’ (P) .

Note that this kind of integral has been
introduced in Ref. [3]. For convenience, we give it
the name Backward-Ito integral. According to the
definition of the Backward-Ito integral, we can easily
get the relationship between the Ito integral and the

Backward-Ito integral as follows :
T ' . T T af(t)
lfm «dW(1) = lf(t)dW(t) +167Wdt,
(3)

where f € V(0,T) andt — f(t,w) is continuous for
a.e. . Then using formula (3), we can obtain
the equivalent SDE in the sense of Backward-Ito

dX = ((a —g—ib)(t,X))dz F0(0,X) *dW (1),
(4)

where X(t,) = X, .

1.2 The convergence theorem on mean-

square methods from Ref. [4]

Theorem 1.1 See Ref. [4]. Suppose that the one-

step approximation X(¢ + h;t,x) has the order of

accuracy p, for the mathematical expectation of the

deviation and order of accuracy p, for the mean-square

deviation. More precisely, for arbitrary 1, <t < ¢, +

T - h,x € R" the following inequalities hold:
LE((X = X) (¢ +hstx)) | < K(1+x12)T A7,
[E1 (X =X)(t +hst) 17 <K (14 21%)7 A2,

(5)
Also, let
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1 1

P2 27,[)1 = P, +7‘

Then for any N and £ = 0,---,N the following

inequality holds .
[El (X - X)(t,51,,X,)1%]7 <
K(1+1 X, 12)7 7, (6)

i. e. the order of accuracy of the method constructed

using the one-step approximation X(t + hst,x) is
1

p=r-o

Theorem 1.2 See Refs. [5-6]. Let the one-step

approximation X (¢ + hjt,x) satisfy the condition of

Theorem 2. 1. Suppose that )?(t + h;t,x) is such

that

| E(X(t + hst,x) = X(t +hst,x)) = O(h™),

@) 1217 = 0(h™),

(7)
Then the method based

[E | )?(t +hit,x) — X(t + hst

with the same A”' and A" .

on the one-step approximation X(¢ + h;t,x) has the
same mean-square order of accuracy as the method

based on X (¢ + h;t,x) , i.e., its order is equal to

1
P =P - bR
Besides, the authors of Refs. [ 4-6 | have

mentioned that the increments of Wiener processes
should be substituted by truncated random variables
In detail, Aw(h) = & Jh,
where ¢ is N(0,1) -distributed random variable, is

in implicit schemes.

replaced by another random variable ¢, /i such that

¢, Jh is bounded, and
g if lgl<Aa,,
& =4A,, if £ >4, (8)
-4, if £<A4,,
= V2l Inhl,l=1
1.3 Full implicit schemes
First, we consider the SDE (2). As is known,

the exact solution is

where A,

t+h

X(t +hit,x) =x + Jb(s,X(s))"dW(s) +

t+h

jHa_i@%ysM>>Ps (9)

which coincides with the solution of the SDE (1) by
using the Stratonovich integrals. Let the mid-
rectangle formula approximate the integrals in (9).
We can get a full implicit scheme of the first mean-
square order as follows

h ‘Klr + ‘Kk+l) h
— kTR VR o+
o 5 &y

[(a _Libb)(t L u)]h
2 ox B 2

(10)
Similarly, the solution of the SDE (4) is

1+h

X(t+hit,x) = x + Jb(s,X(s)) «dW(s) +

X“] = Xk + b([h

t+h

( _fgux<»ps (11)

which is also in agreement with the solution of the
SDE (1). Similarly, if the integrals in (11) are
approximated by the right-rectangle formula, the

numerical scheme has the form:

X =X, + b(tk + h,an) b+
ab
[(a-=—b)(t, +1h,X,,,)]h
0x

which we can prove to be of mean-square order 0.5.
However, based on an analog of Taylor expansion of
the solution (11), another full implicit method

1 9b

an :Xk + (a—?a*b)(tmm A+l)]h+
1 ab
5 bt X |G+
b(t,,X,) & h, (12)

could be

which is of the first mean-square order,

constructed.
2  Mean-square order of the full
implicit schemes

Theorem 2.1 The numerical method (10) with

A, = /41| Inh | is of mean-square order 1.

Proof According to an analog of Taylor expansion
of the solution (9),
)?(l + hjt,x) as follows

@-L@)@+
2 ox

the one-step approximation

ix)]h +

X =x+
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1 9b

b(t,x)AW(h) +ja(t,x)b(t,x)(AW(h))2.

(13)
has the first mean-square order of convergence under
appropriate conditions. The full implicit method
(10) we propose is

~

> 1 9b )( h x +X)]
X =x+ - — h +
e [le- gl
o1+ o 2280 b (14)
27 2
After expanding the right side of (14) aboutx , we
get
ooy G s)]rs
1 ab 2
b(t,x) ¢,k +Ea(t,x)b(t,x) Oh +p,.

(15)
It is obvious that| E(p,) | = O(h*) and E(p, ) =
O(h’). Since
X=X = b(t,2) (AW(h) - ¢, /h) +
1 ab
5 o (L6 (€ =)k = py, (16)
ox
it is possible to show that | E()? -X) 1 = 0(h)

and

E(X-X)" <KE(¢§-¢,)h +
KWE(E -£)" + 0k, (17)
where K is a sufficiently large constant. Using the

inequalities E(¢ - ¢, )> = O(h*) and E(& - ¢} )°

< 27hin Ref. [ 7], we can easily proveE()?— )?)2
< O(h’) . Finally, by applying Theorem 2.2, we
prove the theorem. ]
Theorem 2.2  The numerical method (12) with

A, = /4| Inh| is of mean-square order 1.

Proof Considering the numerical method (12),
we expand the right side of the solution (11) and
obtain

X(t + hyt,x)
t+h

= x+ fb<s,x<s)) «dW(s) +

t+h

/

(a —g—ib)(s,X(s))]ds

X+ [(a —%ﬁb)(i,x) h+b(t,x)AW(h) +

t+h

f f:Lb(e,X(B) ydg = dW(s) +

t

t+h

H“%ﬁb(a,){(a))dme) «dW(s) +p'

—x+ [(a —g—ib)(t,x) ho+b(t,x)AW(h) +

t+h

Jfg—ib(z,x)dW(O) #dW(s) +p',  (18)

where | E(p') | = O(h*), E(p' )* = O(h’),
l E(p*) | = O(h*),and E(p’ )* = O(h’). Since

t+h

J de(G) #*dW(s) = %AW(’I ) o+ %, we can

t

get
X(t + hit,x)
=x+[(a—a—bb)(t,x) h +
0x
1 ab ., b
2 axb(t,x)(AW(h)) + > axb(t,x)h +

b(t,x)AW(h) +p°

=x+[(a—%2—ib)(t+h,x)]h+

1 b 2

b(t,x)AW(h) +p4, (19)
where | E(p3) | = O(R*), E(p3)2 = 0(h'),
|E(p4)| = O0(k’), and E(p4)2 = 0(h).

However, the increments of the Wiener processes in
(19) should be substituted by truncated random
variables. Finally, by using Theorem 2.1, we prove

the theorem. ]

3 Numerical test

Example Consider the stochastic differential equation
dX = tX(1)dW(e),X(0) = X,, (20)
whose exact solution is

t t

X(t) = Xoexp( —%fﬁds + jde(s))-

In application to (20), the Euler Method reads
X =X, +1, X,AW,, (21)

and the two full implicit methods we proposed have

the forms
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h Y’
Xn+l = Xn _Z(tn +7) (Xn + Xn+l) +

which are of the first mean-square order.

The numerical tests examine the behaviors of

1 h th ical i ‘
e numerical methods in two aspects: the sample
Sl ) s xa w22 pects: p
trajectories produced by the numerical methods and
and the true solution shown in Fig. 1 (d) and the
h . .
X, =X, - 7(zn + h)z)(,”l + convergence rates of the numerical methods shown in
| Fig.1(a), 1(b), and 1(c).
e 2 2
tnX/Lgh h + 7( Ln + h) Xll+1§’l ’ (23 )
6 3 ; . - - .
#the error between the exact solution and Euler method 2 LiA  the error between the exact solution and the
4 Wthe reference line with the slope 0.5 — 1 implicit method (22)
8 5 [ the reference line with slope 1 &
£ =]
“\“’2 =1 ‘A\\\\\A\““‘
w 12} \
E 0 V1A g2 pi A
E Aviir A A A 3 A
) =4
=5
_4 6
-6 :;
=5 —4.5 —4 =315 -3 2.5 =2 =5 =45 —4 =35 =3 =25 =2
log h log h
b
3 @ 28 ®) :
2 | Athe }elrror bftween the exact solution and the implicit 26 :H}g El(;’allg:_ ;?thjﬁlgél
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5_ y el
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-3 L/
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=
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Fig.1 Numerical test of the example

Figures 1 (a), 1(b), and 1(c¢) show that,
comparing with the reference line, the Euler method
is of mean-square order 0.5 and the numerical
methods (22) and (23) are of the first mean square
order. In our experiments we taket =1, X, = 10,
and h = [0.01,0.02,0.025,0.05,0.1].

Figure 1 ( d) presents that the numerical
approximations (22) and (23) are much closer to
the exact solution than the Euler method for X, = 2
and h = 0. 04 within the time interval 0 < ¢ < 1. 2.
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