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Abstract In this work we propose a practical entanglement classification scheme for pure states of
2 x L x M x N x Hunder the stochastic local operation and classical communication ( SLOCC) ,
which generalizes the method explored in the entanglement classification of 2 x L x M X N to the five-
partite system. The entangled states of 2 x L x M x N x H system are first classified into different
coarse-grained standard forms by using matrix decompositions, and then fine-grained identifications
of two inequivalent entangled states with the same standard form are made by using the matrix
realignment technique. As a practical example, the entanglement classes of the five-qubit system of
2 X2 x2 x2 x2 are presented.
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Entanglement has been an essential feature of quantum theory, and now is considered to be the key

# Supported by National Key Basic Research Program of China(2015CB856700) and National Natural Science Foundation of China (11175249,
11121092,11375200)

FCorresponding author, E-mail; qiaocf@ ucas. ac. cn



531

JIA Kangkang, et al;Classification of the Entangled States of 2 X L x M x N x H 335

physical resource of quantum information sciences.

nonclassical applications can only be

Many
implemented when entangled states are explored, e.

g. , quantum teleportation''’ | dense coding >’

, and
some of the quantum ecryptography protocols'®’ .
However, many superficially different quantum
states may have actually the same function when
being applied to carry out the quantum information
tasks. It is known that, if two entangled states are
interconnected by invertible local operators, i. e.
equivalent under stochastic local operation and
classical communication (SLOCC) , then they would
be both applicable for the same quantum information
tasks. While there are only two SLOCC inequivalent
tri-partite  entanglement classes in three-qubit
systems * | the inequivalent classes turn to the
infinite when the system consists of more than three
partites.

The entanglement classification under SLOCC is
generally a difficult task as the particles and
dimensions of each partite grow, though it would be
entangled states have

much easier when the

particular symmetriesw . At present, nine
inequivalent families of quantum systems for four-
qubit states under SLOCC have been identified due
to the symmetric property SU (2) ® SU (2) = SO
CORSS

Finer grained classifications could also be

achieved  with  well  constructed  entangled
measures * ). Using the technique of coefficient
matrix '*, 28 genuinely entangled families were

found for the four-qubit system'"''. The rank of the
coefficient matrix is useful in partitioning the

entangled  states into  discrete

2]

entanglement
families'"”’. However as the dimensions and number
of particles both grow, it provides a rather coarse
grained classification'”’.  New method for the

entanglement classification of 2 x L x M x N system

has been proposed''* | and it takes full advantage of

the classifications of 2 x M x N system "', The
method not only provides an even finer classification
for the system, but also is capable of determining the
equivalency of two quantum states falling into the

same entanglement family.

In this work, we generalize the method "’ to
the case of five-partite system of 2 X L x M x N x H.
The five-partite system with one qubit is first
partitioned into tri-partite in form of 2 x (L x M) x
(N x H), and the standard forms of inequivalent
entanglement classes of 2 x (LM ) x (NH) behave as
the entanglement families of 2 x L x M x N x H.
Then the matrix realignment is utilized to determine
the equivalence of two entangled states and the
connecting matrices between them within the same

family.

1 Entanglement classification of pure
system of 2 xL xM xN xH

1.1 Representation of five-partite states
Every quantum state | 4 > of five-partite system

2 x L x M x N x Hmay be formulated as
2,M,N,LH

’ydmn/zl i5l9m’nah >a (1)

iom k=1

L > =

where y € C are coefficients of the state in

ilmnh
representative bases. Therefore, the quantum state |
¢ > may also be represented as a high dimensional
complex tensor ¢y whose matrix elements are 7y, ., -
In this form, the SLOCC equivalence of two quantum
states ¢¢' and ¢ °' may be formulated as

l,[/’ — A(l) ®A(2) ®A(3) ®A(4) ®A(5)d/’ (2)
hereA(]) p G 2x2 , A(Z) c C LxL , A('S) p C MXM’ A(4)
e CV", and A® e C"" are invertible matrices of
2x2,LxL, MxM, NxN, and H x H, respectively,

which act on the corresponding particles.

For the sake of clarity, the quantum state ¢y may

r
also be formulated as ¢y = ( l) , and

2

OgYmn Y Yiuwe 1]

EB'}’HZH Y22 YN %

0o : I

04 ' %
I DD)/]LMH Yoz Yiiunn

=0 0, (3)

I, UgYaun - Yaue Younn [
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which is obtained by grouping the particles as2 x (L
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x M) x (N x H). Here ', ¢ C"" | i e.,
complex matrices of LM columns and NH rows ( we
assume LM < NH without loss of generalities) .
1.2 Entanglement families of 2 x L x M X
N x H system

It is easy to observe that the quantum state of
tripartite system of 2 x LM x NH could also be
represented in the same form as Eq. (3). Following
the method'™*’ | the SLOCC equivalence of two states
' and ¢ in Eq. (2) transforms into the following
form

¢y =TRPR®QY, (4)

and in the matrix pair representations, we have

Rl I

r, Pr,0o
hereP = A® ®AY ,0" =AY ®A, T stands
for matrix transposition, A'" acts on the two

matrices I', , , and P and Q act on the rows and
columns of the I', matrices, respectively. The
SLOCC equivalence of two 2 x L x M x N x H
quantum states in Eq. (5) has a form similar to the
tripartite 2 x LM x NH pure state''®'. The differences
lie in the fact that P and Q are not only invertible
operators but also direct products of two invertible
matrices, A and A [ A" and A",

As in Ref. [ 14 ], we have the following
proposition.
Proposition 1.1 If two quantum states of 2 x L x M x
N x H are SLOCC equivalent then their corresponding
matrix-pairs have the same standard forms as those of 2
x LM x NH under the invertible operators T e C > |
P c C LM xLM , and Q p C NHxNH .

This proposition serves as a necessary condition
for the SLOCC equivalence of the entangled states of
the2 x L x M x N x H system.

The transforming matrices T,, P,, and Q, for
the standard form can be obtained. Generally the
transformation matrices for the standard form are not
unique. For example, if T, , P, , and Q, are the
matrices that transform ¢ into its standard form, then

the following matrices will do likewise,

T,@SP,® (05 )y = (f) (6)

where SJ S™' = J, i.e., [S,J] = 0. The
nonuniqueness comes from the symmetries of the
standard forms.

1.3 Entanglement classification of a 2 x
L xM x N x Hsystem

As the main result of the paper, we present the
following theorem.
Theorem 1.1
states ¢ and ' are SLOCC equivalent if and only if

Two2 x L x M x N x H quantum

their corresponding matrix-pair representations have
the same standard forms of 2 x LM x NH and the
transformation matrices P and @ in Eq. (5) have the
forms of direct products of two invertible matrices,
i.e.,

P=A% A% andQ" = A" ®A".
Proof If two2 x L x M x N x H quantum states i
and " are SLOCC equivalent, we have

v =AY @AY @AY ®AY QAT Y,

(7)
here A"’ is an invertible matrix, i € {1,2,3,4,5} .
According to Proposition 1. 1, we have
) =TRPRQ, (8)
which means that " and ¢y have the same standard
form of 2 x LM x NH . Combining Eq. (7) and Eq.
(8) yields
T AV ® (PT(AY @AY)) @
(@) "AY @A)y =y (9)
As the unit matrices E (X) E X) E must be one of the
operators which stabilizes the quantum state ¢ in the
matrix-pair form, P and Q" have the solutions of P =
AP @AY and Q" = AW @A,

If the two quantum states have the same
standard form, then we will have Eq. (8). And if
further P and Q have the decomposions of P = P, (X)
P,andQ = Q, ® Q, whereP, e C"" | P, e C""
and @, e CV" |, Q, e C™", 4’ and ¢f are SLOCC
equivalent entangled states of a2 X L x M x N x H
system. As matrices P and Q are invertible if and
only if both P, , P, and Q, , O, are invertible, thus

J =T®(P,®P,) ® (Q ®0,)"

(10)

Thus the classification procedure may be stated
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as follows. First, we construct the standard forms of
the 2 x LM x NH system, which behave as the
entanglement families of 2 x L x M x N x H and the
transforming matrices T, , P, , and Q, are also
obtained. If two quantum states transform into
different families, they are SLOCC inequivalent.
Otherwise, the connecting matrices of T, P, and Q
may be obtained. And we can determine whether
such matrices have the direct product form or not
using the matrix realignment technique““‘. Finally,
Theorem 1.1 provides the complete entanglement
classification for the two entangled states. In the
following, we give detailed examples for2 x 2 x 2 x

2 x 2 quantum system as the application of our

method.

2 Entanglement classification of
2 x2 x2 %2 x2 system

There are totally 32 inequivalent families for the
genuine 2 X2 X2 x2 x 2 entangled classes according
to our method. The genuine entangled families of 2 x

2 x2 x 2 x 2 quantum states are listed as follows.

The ./7*}(22222) =32 families include:
two families from 2 x 2 X 2 system ( GHZ and W)
lp > =11(11)(11) > +12(22)(22) >,
lp > =11(11)(11) > +11(22)(22) > +
12(11)(22) >,

two families from 2 x2 x3 system

lyp > = 11(11)(11) > +11(12)(12) > +

12(12)(21) >,

[T(11) (11) > +11(12)(12) > +

12(11)(12) > +12(12)(21) >,

one family from 2 x2 x4 system

lgp > =11(11)(11) > +11(12)(12) > +
12(11)(21) > +12(12)(22) >,

six families from 2 X3 X3 system

lyp > = 11(11)(11) > +11(12)(12) > +
12(21)(21) >,

lp > = 11(11)(11) > +11(12)(12) > +
[1(21)(21) > +12(11)(12) >,

lp > = 11(11)(11) > + 11(12)(12) > +
12(12) (12) > +12(21)(21) >,

lyp > = 11(11)(11) > + 11(12)(12) > +

L >

12(11)(12) > +12(21)(21) >,
> =11(11)(11) > +11(12)(12) > +
12(12)(21) > +12(21) (11) >,

lp > =11(11)(11) > + 11(12)(12) > +
[1(21)(21) > +12(11)(12) > +
12(12)(21) >.

five families from 2 X3 x4 system

lp > =11(11)(11) > + 11(12)(12) > +

11(21)(21) > +12(21)(22) >,

> =11(11)(11) > +11(12)(12) >
11(21)(21) > +12(11)(12) >
12(21)(22) >,

> =11(11)(11) > + 11(12)(12) >
11(21)(21) > +12(11)(11) >
12(21)(22) >,

> =11(11)(11) > +11(12) (12) >
11(21)(21) > +12(12)(21) >
12(21)(22) >,

> =11(11)(11) > +11(12)(12) >
11(21)(21) > +12(11)(12) >
12(12) (21) > +12(21)(22) >.

The other 16 families come from the standard

+

+

+

+

+

+

+

+

forms of a 2 x4 x4 system. Among the 16 standard
forms of 2 x4 x 4, there also exist the continuous
entanglement  families. That s, different
entanglement families arise from the different values
of the characterization parameters. We have proved
that the standard forms, with the continuous
parameters belonging to the same entanglement class
of 2 x 4 x 4 system, correspond to different
entanglement families of 2 x2 x2 X2 x2 system.

In addition, a necessary condition for the
genuine entanglement of a2 x L x M x N x H system
is that all dimensions of the five particles shall be
involved in the entanglement, requiring that LM <
2NH (assuming the larger value of the dimensions to

be LM ).

dimensions, especially in the case of LM = NH.

The scheme works better for higher

3 Summaries

We have proposed a practical classification
scheme for the entangled states of 2 x L x M x N x H

pure system under SLOCC. By using the standard
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forms of 2 x LM x NH , the entangled families of 2 x
L x M x N x H are obtained. And the invertible local
operators that connect two quantum states in the
same family may also be constructed by using the
matrix realignment technique. This provides a
necessary and sufficient condition on the SLOCC
equivalence of the two quantum states. As an
application, detailed examples of the entanglement
classification under SLOCC for five-qubit system is
presented, which was not discussed systematically in

the literature to the best of our knowledge.
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