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Abstract We characterize a sufficient and necessary condition which ensures that the generalized
1

Hardy operator %7,f(x) = |- |f(x,t,,-,x,¢,) (¢, - ,t,)dt, ---di, is bounded on RMO (R").
y b
o

The condition deeply depends on the nonnegative function ¢ defined on [0,1] x -+ x [0,1].
Furthermore, the corresponding operator norm is worked out. In addition, we also extend the results
to the high-dimensional product space.
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B OB ORARREE LN —RKT Z(x) = fJﬂ%n”meUw“th '

RMO(R") EH R ww o sb B4, IMEHTZL2EB T EXAL0,1] x- x[0,1] L3
Wy RAMT 7, WEFHE. Wi, TEXNERE ZGERRENE
XEEWR S ABRET; RR=ME; RMO(R")

In 1984, Carton-Lebrun and Fosset''' defined where y:[0,1] — [0, ) is a function. Evidently
the weighted Hardy-Littlewood average operator U, the operator U, deeply depends on the nonnegative

function ¢. For example, whenn = 1 and¢(x) =1
U f(x) = jf(xz)lﬁ(t)dt’ () forx e [0,1], the operator H, is just reduced to the
0
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classical Hardy operator

HfCo) = [, (2)

is the more extensive

called the

for x % 0. Consequently, U,

Hardy operator and sometimes is
generalized Hardy operator.
The classical Hardy operator H is bounded on

L’(R). That is, forl < p < o« ,

p
I HA ey < ——— 11 weey
p -1

holds, where the constant P 1 is best possible.

p -
In Ref. [2], Xiao considered the generalized

Hardy operator U, and obtained the following

theorem.

Theorem A Suppose thaty:[0,1] — [0, ) isa

nonnegative function and p € [1,o ]. Then the

operator U, is bounded on L"(R") if and only if

1

(0 dt < oo (3)
0
Moreover, if the inequality (3) holds, then the

operator norm of U, on L"(R") is given by

1

1
l U.p l pRm SRy = | "‘//(t)d“ (4)
0

and U, :BMO(R") — BMO(R") exists as a bounded

operator if and only if

fzp(t)dt < . (5)

Moreover, if the inequality (5) holds, then the
operator norm of U, on BMO(R") is given by

1
” Uw ” BMO(R")—>BMO(R") = fl/l(t)dt (6)
0

Recently, Chen et al. ™

defined as

studied the operator 7,

VéJ(x) = ij

Sty b ) (et ) de ode,, (7)
where fis defined on R"and ¢:[0,1 ]" — [0, ).
72, is an operator defined on the one dimensional
product space. In Ref. [3], the following theorem
was obtained.

Theorem B Suppose that :[0,1]" — [0, ) is

a nonnegative function andp € [1,0 ] . Then, the

operator 77, is bounded on L"(R") if and only if

lf"'}(tl"'l”);’lﬂ(tu”',tn)di <w. (8)

Moreover, if the inequality (8 ) holds, then the
operator norm of 77, on L"(RR") is given by

11
1
” //4(// ” P(RM—LP(RM)  — f"'J(tl"'t,,) ”lﬁ(tl f"J,,)dt-
0 0

(9)

Campanato space £“”(R") was first introduced by
Campanato in Ref. [ 4 ]. The

Campanato space is as follows.

definition of

Definition A Let — 0 < a < ® and0 <p < =».
A locally integrable function f is said to belong to
Campanato space £“"(R") if there exists some
constant C > 0 such that for any cube  C R" with all
the sides parallel to the axes,

|Ql|ii((12fo | f(x) - £, I”dx)l/q <c

(10)
The minimal constant C is defined to be the £*” (R")
norm of f and denoted by || £ ,a(gs-

In Ref. [ 5], Zhao et al. studied the
boundedness for U, on the space " (R"). Theorem
C was obtained.

Theorem C Suppose thatgy:[0,1] —[0,% ) isa

. . n
nonnegative function andp € [l, w), ——=<a <l
p

Then U, is a bounded operator on £*"(R") if and

only if
1
ft“lﬁ(t)dt< ©. (11)
0
Moreover,
1
1 Uy o s = [C()de (12)
0
Motivated by the previous studies ™), we

devoted ourselves to investigating the boundedness of
the operators 7/, at the endpoint. A simple
computation implies that 77, is not bounded on
BMO(R") and thus is not bounded on £*"(R"),
since £ (R") equals to BMO(R") as a = 0. It is

necessary for us to find some new spaces to replace



543

WEI Mingquan, YAN Dunyan;Sharp bounds for generalized Hardy operator on product space 435

BMO(R") and ¢*"(R").
consider this question and introduce two new spaces
RMO(R") and Z*"(R").

definitions as follows.

In this work, we mainly

We shall give their

1 Some definitions

Before we put forward our main results, some
First we introduce
the spaces RMO(R") and .2“"(R") corresponding
to BMO(R") and &*"(R"),
Definition 1.1 Let f € L
f e RMO(R") if and only if

1
1 g = = sup rer [ 1f(x) = fi 1 di < o0,
2L TR )
(13)

where the supremum is taken over all rectangles with

useful definitions will be given.

respectively.

we(R"). We say that

all the sides parallel to the axes and f, denotes the

- ‘R‘jf( %) dx,

Definition 1.2  Suppose that f € L

average of fover R, i. e

(R"), -
<o <wand0 <p < . We say thatf € .2 (R")

loc

if and only if

]l%(ﬁfklﬂx) SARY

holds for all rectangle R € R". The minimal constant
C is defined to be the .Z“"(R") norm of f and
denoted by || £l Larcgn-

Definition 1.3 Suppose that the measurable
function f'is defined on R x ++ x R™ and ¢:[0,1]"

1/p

< C(14)

— [0, ). The operator

US) =[]

0 0

t,x")o(t, o ,t,)de,---de, (15)

fCxt e, ,
is called the generalized Hardy operator on the high
dimensional product space, where x' € R" withi =
1,2, ,n

Obviously, ||*| guo forms a norm if we define
RMO as the quotient space of all equivalent classes
of functions whose difference is a constant. By
Definition 1.1 and 1.2,
deduce that the space BMO(R") strictly contains
RMO(R") and RMO(R") D L™ (R").

Moreover, we conclude that the space .Z2*"(R")

it is not difficult for us to

is strictly contained in ¢*"(R") and equals to the

space RMO(R") when a = 0 as well.

2 Main results and their proofs

First, we study the boundedness of the
operators 77, defined on the space RMO as in (13)
and the space .Z2“"(R") as in (14), and so does
the operator U,.

Theorem 2.1 Tet:[0,1]" — [0, + o ) be a
function. Then 77, : RMO(R") — RMO(R") exists

as a bounded operator if and only if

1 1

f—--ﬁ[x(l)dt < . (16)

Moreover, when (16) holds,
7, on RMO(R") is given by

the operator norm of

1

_ f...lflﬁ(t)dt. (17)

0

|| /?Aw || RMO(R™) —RMO(R")

Proof In what follows, for eacht = (¢,,+--,t,) €
R"with¢, >0, 7 =1,

b,] x[a,,b,] x - x[a,,b,] € R", define

tR = [t,a,,t,b,] x [tya,,t,b,] x -+ x [t,a,,tb, ]
Assume that (16) holds. If f ¢ RMO(R"), then,

II Wn"n
for any rectangle R,

,n and rectangle R = [a,,

it follows from the Fubini’ s

Theorem that

(“ i = i) (7 )y

_ ;LL...JJ@(;]%...

:J l;ﬁ?ﬂhy“m
Jrinbae

- |- jﬂkwmdt (18)

Sty ) (1) dedy

oy, ) dyg (1) de

2z, dyg (1) de

I
_Cg’_o

where in the last equality we use the variable
substitution z, = ¢y, with i = 1,2,--- n. We
conclude from the Minkowski’ s integral inequality

that

Ttk (7D ) = (7,18

= itk |2 0 = [ [ aeay
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SCtyisty) =L w(de | dy <
[ [(rrph o =gl )t -

JN'I(IAE%ATﬁR‘f(z"""z") _xﬁR\dz)w(t)dz

1 1

< [ [ed o (19)

The inequality (19) shows that

1 1
| 7 W wworeer < [+ [#CO AL oz
0 0

Thus we have

1 1

| % I aworen < [ [w(de. (20)
0

0

Conversely, if 77, is bounded on RMO(R"), then
we can choose

1

, x e R},

Jo(x) =[ (21)

-1, xe R/,

where R; and R denote the left and right halves of
R" respectively. In fact, R; and R are separated by
the hyperplane x, = 0, where x, is the first
coordinate of x € R". At this point, a simple

computation leads to

(f,) (x) = L";Jollfl(l)dt, x e R,
_L...Ldj(t)dz, x e R
(22)

That is to say,

1 1

(Z,£) (o) = £y () [ [w(de (23)

By the definition of f;, we clearly have f, € RMO(R")
with || f1| gyocgny # 0, and so does 7 f, by (23).
Obviously, (23) implies that

1 1

|| %ufo || RMO(R") — ||f0 || KMU(R")I'Hle(t)dL (24)
0 0

Consequently, it follows from (24) that

1 1

| % I aworen = [~ [w(de. (25

0 0

Combining (20) with (25) yields the conclusion in
(17). O
Using the almost same method, we obtain the
following results.
Corollary 2.1 TLet@:[0,1]" — [0, + o ) be a
function. Then U¢ :RMO(R™x =+ x R"™) —
RMO(R" x ---
if and only if

x R"") exists as a bounded operator

f“’jgp(t)dt < . (26)

0

Moreover, when (25) holds, the operator norm of

U, on RMO(R" x «=- x R"") is given by

1 1
I Uy I rwocem e x®™ )>RMO(R™ xovs xR ) = j...jgo(z)(u.
0 0

(27)
Next we will consider the boundedness of the

operators 7, on 72*" (R").

Theorem 2.2 Suppose that — L <o < ® and
p

1 <p< o. Lety: [0,1]" — [0, + ) be a

function. If

1 1
ffH £ () de < o, (28)
0o 0=l

then 77, is bounded from Z2“"(R") to Z2“"(R")

and the following inequality

T
P /n
” %(/, ” Sap(RY) (R = jf tia d/(t)dt
i =1

0 0!
(29)
holds.

Proof Assume

! 1 n
l!Ht (1) dt < oo

holds. Noting the equality (18), it follows from the

Minkowski’ s integral inequality that

1 de) »

(WL (2,0 (y) = (%)
1 1
= e Twlh
\(%fw) —L]"'LlﬁRw(t)(lt

1 T
= T;QT%<TETL lu.l

«
[ RI™

P 1
dy)
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(g t,y) = L)W (0)de|7dy)r

1

1
e
g - see
I R1™y

0

(ﬁﬁe LGy sty,) = |"dy);’¢(t)dt

1

1
_f...f;( 1
T4 dLaR1E R

0

| fCzrveenz) = o 17 T 6 (1) de

i=1

1 1

< f...thf/u/,(t)dz 11 nam- (30)

o o=t

The inequality (30) implies that
1 1

| Zf 1 sz < [ [T WO AN i
o o=t

Naturally we have

1 1

(2 P f f [0 w0 de

0o 0=l
]
Now we formulate the similar conclusion on the
high dimensional product space.
Corollary 2.2 Suppose that — 2 <@ < o and
P
Il <p < o. Let ¢: [0,1]" — [0, + ) be a

function. if

1 1

j...fﬁti%p(z)dt < o, (31)

0o o=l

then U is bounded on .2*"(R™ x .-+ x R™), and

the operator norm of U, is no more than

1 1

J""ft[]li$¢(l)dt.

0 0

Using the same method as in the proof of
Theorem B, the obtain the following corollary.
Corollary 2.3 Suppose that ¢:[0,1 ]"— [0, )
is a nonnegative function andp € [ 1, ]. Then the
operator U_ is bounded on L"(R"™ x -+ x R"") if and
only if

1
m;

f---f]l[t,-"*so(tl

0 0i:l

Moreover, if the inequality (32) holds, then the

g )dt < o (32)

operator norm of U_on L"(R™ x +=- x R"") is given by

” U¢ ” LP(R™ X-+- xR™ ) —L' (R™ x--+ xR™ )

1 1
_ j...fnti*#gp(tl,---,zn)dt. (33)
0 0

i=1
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