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Abstract  Using the Lie group analysis method, we study the two-component Camassa-Holm

equation, which models shallow water waves moving over a linear shear flow. The similarity
reductions and exact solutions for the equation are obtained. Then the power series solution are
considered by using the power series method. Furthermore, the convergence of the power series
solution to the equation is shown. The physical significance of the solutions is considered from the
transformation group’ s point of view.
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In this paper, we consider the following two- which was first derived as a bi-Hamiltonian model by

Olver and Rosenau'''. Eq. (1) both

component Camassa-Holm equation includes

u, —u,, +3uu, -2uvu, —uu, +pp, =0,
p, +pu+pu =0,
(1)
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velocity and density variables in the dynamics of
shallow water waves. In Ref. [2], Constantin and

Ivanov derived (1) in the context of shallow water
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waves theory. The variable u(x,t) describes the
horizontal velocity of the fluid and the variable p (%,
t) is in connection with the horizontal deviation of
the surface from the equilibrium, all measured in
dimensionless units'>’ .

Forp = 0, (1) becomes the Camassa-Holm
equation, modeling the unidirectional propagation of
shallow water waves over a flat bottom. Here u(x,t)

stands for the fluid velocity at time ¢ in the spatial x-

8]

direction "', The Camassa-Holm equation is also a

model for the propagation of axially symmetric waves

9-10]

in hyperelastic rods’ It has a bi-Hamiltonian

Y20 and is completely integrable® . Tt

structure
was claimed that the equation might be relevant to
the modeling of tsunami'"*’ ( see also the discussion
in Ref. [15]).

The Cauchy problem and initial-boundary value
problem for the Camassa-Holm equation have been

16-20]

studied extensively' . It has been shown that this

equation is locally well-posed for some initial data.

More  interestingly, it has  global  strong
solutions'"*"7*")and also finite time blow-up
solutions'"*"7:2122 Forp # 0, the Cauchy problems

of (1) have been discussed in Refs. [2,23].

For the sake of providing more information to
understand the shallow water waves moving over a
linear shear flow, we will investigate the vector
fields, symmetry reductions, and exact solutions to
(1) by the Lie symmetry analysis method.

It is known that the Lie symmetry analysis is a
powerful and systematic method for dealing with
( PDEs )™,

Moreover, this method has had a profound impact on

partial  differential  equations
both pure and applied areas of mathematics,
physics, and mechanics, etc. For the PDEs,
admitting symmetry is one of the intrinsic properties
of the equations. Based on the symmetries of a
PDE, many other important properties of the
equation such as integrability, conservation laws,
reducing equations, and exact solutions can be
considered successively **?* .

The main purpose of this paper is to apply the
Lie group method  for

analysis dealing  with

symmetries, symmetry reductions, and exact
solutions to the two-component exact Camassa-Holm

equation.

1 Lie symmetry analysis for the two-

component Camassa-Holm equation

In this section, we perform Lie symmetry
analysis for (1), and obtain its infinitesimal
generators and commutation table of Lie algebra.

According to the method of determining the

infinitesimal generator of PDEs, the infinitesimal

generator of (1) can be written as

d d
V= t — + t — +
g(x’ ,u’p) ax T(x’ 9u7p) (')t

b(x.t,up) L 4 y(arup) 2 (2)
Ju ap

where the coefficient functions é(x,t,u,p) ,7(x,t,
u,p),p(x,t,u,p), and y(x,i,u,p) of the vector
field are to be determined later.

If the vector field (2) generates a symmetry of
(1), then V must satisfy the Lie symmetry condition

pr’V(A) 1, ., =0, 3
pr(l)V(Az) |A2:0 =0,

where pr'’”V and pr'"”V denote the 3rd and Ist

prolongations of V, respectively, and

A =u -u, +3uu, -2uu, -
uu,.. +pp,, (4)
A, =p, +pu+pu,, (5)

for Eq. (1). That is

(3) d J . 0 < 0
Voot +" - +9y" 2 +
Epr P TVt T

E ) w 0 wx O )
— + — + — + —
O T T T
ﬁpwv A IV O B B
ou ap ou, ap, ap,

(6)
where ¢", 4", ", ', d™, 0™, and ¢ are the

coefficients of pr'™ V and pr'"” V. Furthermore, we

have

d)l :Dld)_uxle_uLDlT? (8)
"=Dy-pDE-pD.T, (9)
lv[II = Dtl!l _prtf _P;Dﬂ', (10)

¢ =D -ubg-ubDr, (7)
P
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¢ = D($ - fu, - 7u,) +fu,, + 70

(11)
(12)
d)m'\' = Dj(¢ -éu, - Tu[) tEU . T TUL,,

(13)

where D_and D, are the total derivatives with respect

-Tu,) +éu,, + 71U

¢ = DD (¢ - &u,

to x and t, respectively.

Substituting (7) - (13) into (6), in terms of
the Lie symmetry analysis method, we obtain the
following equations for the symmetry group of (1)

L =é=¢&,=6 =0,

0 :O’T[[ :07
' ' (14)

S

x

O

b

Dp == pTz'
Solving (14), we obtain

E=c, T =cyl +cy,
b =-cqu, Py =-qop, (15)
where ¢, ,c,, and ¢, are arbitrary constants.
Hence the Lie algebra of infinitesimal
symmetries of (1) is spanned by the following vector

fields

V, = o (16)
It is easy to verify that {V,,V,,V,| is closed
under the Lie bracket. In fact, we have
Lv,,v,] =[v,,Vv,] =[V,,V,] =0,
vl === =-v,n] =0,
[V,,V,] ==-1[V,,V,] =-V,. (17)

2  Symmetry groups of the two-
component Camassa-Holm equation

In section 1, we have obtained the infinitesimal
symmetries of (1). Furthermore,for (1), the one-
parameter groups G, generated by V,, V,, and V, are
given as follows

G, :(x,t,u,p) > (x +€,t,u,p),
“Lpe©),
Gy:(x,t,u,p) — (x,t +e,u,p),

G,:(x,t,u,p) — (x,te°,ue

where € is any real number. We note that G, is a

space translation; G, is a time translation; and G, is
a genuinely local group of transformation. They are
very important in our study of the exact solutions of
PDEs.
Consequently, ifu = f(x,t) andp = g(x,t) is
a solution of (1), then u, and p, (i = 1,2,3)
given as follows are solutions of (1) as well
Wy =f(x—e,t),p(,) =g(x -e,t), (18)
o =e flx,te ), p, =e ‘gla,te ), (19)
U s =f(x,t —€), ps =g(x,t —€). (20)

where € is any real number.

3 Symmetry reductions and exact
solutions of the two-component Camassa-
Holm equation

Now we deal with the exact solutions for (1)
based on the symmetry analysis. To do this, linear
combinations of infinitesimals are considered and
their corresponding invariants are determined.

0

(i) For the generator V, = Pt we have the
x

similarity variables

E=t,w=u,v =p,
and the group — invariant solution isw = f(£¢), v =
g(&), that is,

w=f(1), p = g(1). (21)
Substituting Eq. (21) into Eq. (1), we obtain the

reduction equation
[f =0, (22)
g =0

where f = %;, g = % Therefore, (1) has a

solutionu = ¢,, p = ¢,, where ¢,, ¢, are arbitrary

constants.  Obviously, the solution is not
meaningful.
(i1) For the generator V, = ti - ui —pi,

at ou ap
we have the similarity variables
E=x, 0 =ut, v = pt,
and the group-invariant solution is w = f(§), v =
g(&), that is,
w=f(x)"", p=glx). (23)
Substituting (23) into (1), we obtain the reduction
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equation
[ SRRV
-—g+ef +egf=0,

- +gg =0,

(24)
where [ = g = dig
dg’ d¢
0 9d
(iii) For the generator V, + V, = — +t— -
0x at
wd - p —, we have the similarity variables
ou ap

x

E=te", w =ue', v =pe,
and the group-invariant solution is @ = f(&), v =
g(&), that is,

u=ce ' flte"),p =egle™). (25)
Substituting (25) into (1), we obtain the following
reduction equation

-3 124 + 66S7 - 5Ef + 8EY) +

26801 - €17 + €41 - & - geg =0,
-2¢f+g' -éef - &g =0,
(26)
where [ = (;ié: = %
(iv) For the infinitesimal generator cV, + V, =
c 9y i, we have the similarity variables
ox 0t

E=x-ct,w =u,v =p,
and the group —
g(&),

invariant solution isw = f(£¢), v =
that is,
=f(x—ct),p =glx —ct). (27)
Substituting (27) into (1), we obtain the reduction
equation
[(3f— Of =21/ + (e =N +gg' =0,
(f-o)g" +gf =

(28)
where [ = % df
Remark 3.1 Noting that the reduced equations

such as (24) and (26)

nonlinear or nonautonomous ODEs,

are all higher-order
we will deal

with such equations in the next section.

4 The power series solutions

In section 3, we have obtained the reduced

equations by using Lie symmetry reductions. In this

section, we will treat the nonlinear ODEs (24 ),
(26), and (28). The power series can be used to
equations, including

solve  differential many

complicated differential equations with nonconstant

[29]

coefficients Now we consider the power series

solutions to the reduced equations.
4.1 The power series solutions to Eq. (24)
Now, we seek a solution of (24) in the form of

a power series

J€) = anf", g(§) = anf”, (29)

where the coefficients p, and g, are all constants to be
determined.

Substituting (29) into (24), we have

- Zp”é” +3 2 2 (n+1 = E)pp,. & +

2(n+1)(n+2)pn+2§" -22 Z(k+1)

n=0 k=

® n

> >

n=0 k=0

(n+1-k)(n+2-k)(n+3 -k)pp,. & +

(n +1 -k) (n +2 - k)Pk+1P/;+2—k§n -

@ n

Z z (n+1- k)qkqm—l—kgn =

n=0 k=0
- anfn + 2 z (n+1-k)qp,..&" +
n=0 k=
2 2(’1"'1 - k)pig,..€ =0 (30)
i=o £20
From (30), comparing coefficients, we obtain the

recursion formula

1
(n+1)(n+2)(n+3)p,

[3p0pn+l +(n+2)(1 =2p)p,., + ‘I(annj +

Z (n+1-k) [3l)kl)n+14 + 419,02k —
=
(n+2 —k)(2(k + 1)p,,Poay +

(n+3 =k)pp,s) ]t

1

vl = L
ot (n+1)p,

Z (n+1 =k)(qup,oi s + PiGuir i) ], (31)
k=1

foralln = 0,1,2,---.

Puws = {=p,+(n+1)

q, = (n+1)qp,., -

Thus, for arbitrarily chosen constants p, # 0,
P.,P,, and q,, from (31), we obtain

po(=1+3p,) +2p,(1 =2p,) + qu9,
6P0

Ps =

’
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_ 7,(1 -p))
Po

q, (32)

then, we have

_pi(3p, = 1) +2p,(3p, —4p,) .

P4 24p,
6p; (1 =3p,) +2q,4, + ¢,
24p, ’
-2 -2
. q, (102]72 P14, , (33)
Po

and so on.

®

Thus, the other terms of the sequence {p,}._,

and {q,{” , can be determined successively from
(31) in a unique manner. This implies that, for
(24), there exists a power series solution (29) with
the coefficients given in (31). Furthermore, it is
easy to prove the convergence of the power series
(29 ) with the coefficients given in (31). As an
example, we consider the convergence of the power

series solution (29) of (24). From (31), we have
Lpos I <ML p, L+lp L+l p ol +l g, 1+

n

z (T pa L+ g 1 g 1+
[

Lpea U pn oV p s, | )1,
n=0’1’2"."
1 -2p, 1 qo}

where M = , .
‘Po ‘ Po ‘

max{ 1 1,
‘po‘

Similarly, from (31), we have

n

L g, 1< N[lg, I+l p, I+ 2 (1 g 1 ps I+

k=1
| pk || qn+1—k | )Ja
n=0,1,2,-,

where N = max{]i’m}.
‘Po‘ ‘Po‘

Now, we define two power series R = R(§&) =

3

Y r& andS = S(¢) = Y s,£", by taking
n=0

n=0

ro=lpl,s =lgqgl,i=0,1,2,j=0,

Fos = MU, L+lr, L+l L +ls,, |+

n+l n+2 n+l

n

2 (bt P+l s, s, 1+

k=1

[ U B O PR O B R r,z+37/i|)},

n

s, = N[Ls, L+lr, |+ z (Fsy U, 1+

k=1

Lo, )],
where n = 0,1,2,---. Then, it is easily seen that

lp,l<r,lqgl<s,n=0,1,2;"-.

no

In other words, the two series R = R(&) = z r.&"
n=0

®

and S = S(¢) = z.snf" are majorant series of

iso
(29), respectively. Next, we show that the series R
= R(&) and S = S(¢&) have positive radius of
convergence. Indeed, by formal calculation, we

have

R(¢) ry &+ r2§2 + Zr””f”ﬂ
n=0

ro +r,é+néd + M| 2 r,é o+
n=0

Y ®
n+3 n+3
z rn+1§ + E ( ru+2§: + Z Sn+l
n=0 n=0

n=0

§n+3

n @ n

Z Zrkrnﬂ—kg’”} + Z z

n=0 k=1 n=0 k=1

+

n=0 k=1

©  on
n+3 n+3
SiSpaab Tt z z TeaTwnaé — F
®© n

3
z Z M€’ ]

Ao =i
=ry 4 +nE + MIER+ (£ -ré -
& + &R -&r) (R -r,) +2R -
3r,R+r + (6 -1é-1)(R -1, -
né) + (€ =5 +E8)(S =5 —énR],
and
S(&) =5, + N[ES + (1 +28 =25,)(R - 1,) ].
Consider now the implicit functional system with
respect to the independent variable £ |
F(¢,R,S) =R -1y, —ré - r2§2 —M[§3R +
(& —ré-r& +&R-¢r)
(R=r) +(§-né—r)(R—ry =) +
(& =508 +£9)
(S -s,) —&rR+2R* -3r,R +1,] =0,
G(é,R,S) =S —s, - N[£S +
(1 +28 -2s))(R -1,)] =0.
Since F', G are analytic in the neighborhood of (0,r,,
so), F(O0,ry,s,) =0,6(0,r,,s,) = 0.
Furthermore, the Jacobian determinant

I(F,G)
a(R,S)

if we choose the parametersry, =1 p, | ands, =1 ¢, |

=1 £0,

(0.rg.59)
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properly. By the implicit function theorem™ | we see 4.2 The power series solutions to (26)
that R = R(&) and S = S(¢) are analytic in a Now, we seek a solution of (26) in the form of

neighborhood of the point (0,r,,s,) and with the positive
radius. This implies that the two power series (29)
converge in a neighborhood of the point (0,r,,s,) -

The power series solution of (1) can be written

as
u(x,t) = pt +pxt +px’t +pxt +
zpn+3xn+3til
n=1
=pot +patT +pattT +
Po(_l +3p1) +2P2(1 _2]’1) + 409, P
6p,
> 1

> (n+1)(n+2)(n+3)po%_p" *

n=1

(n+1)[3pyp,,, + (n+2)(1 =2p)p,, +

Qoo ] + 2 (n+ 1 =k)[3pp,.,, +
k=1

GG — (0 +2 = k) (2(k + 1)p,,,

n+3 -1

pn+27l:+(n+3_k)pkpn+3—l():|}x t ’

-1 -1 n+l -1
p(x,t) =gyt~ +q,xt" + g, %"t
’ 0 1 ,,Z‘] +1

®

-1 qo(l _p]) - 1
+ —xl

qol

n

Z(n+1—k)

k=1

Lq, = (n +1)qep,., -

(P + Pugu) 16070, (34)
where p, # 0,p,,p,, and g, are arbitrary constants.
The other coefficients p,(n = 3) and ¢,(n = 1) can
be determined successively from (31).

In physical applications, it will be convenient
to write the solution of (1) in the approximate form
1

u(x,t) = pot™ +pat” +pa’tT +

po(=1+3p,) +2p,(1 =2p,) +quq, 3 -1
xt +

6p,
p1(3p1 -1) +2P2(3p0 _4p2) 4
24p, "
6p, (1 =3p,) +2q,q, + l]f G
24p, ’
1 -
p(x,t) = gt +Moct_1 +
Po
4 —2qop> = 2piq, ,
X L +

2p,

in terms of the above computation.

+ .
Po & (n+1)p,

the power series (29 ). Substituting (29) into (26)

and comparing the coefficients, we obtain

2
9o
Py = _?’ 4, = 2q,p,,

3(=q0q, +4pop,)
pZ = ]6 ’
2(-2q,9, — q, +20pp, +9p})
Ps = 45

. (35)

Generally, forn = 0 , we have

n

Puis = (n+4)z(n+6)%;[ (n -k +4)q,

Gy s +(n =k +3)(12 + (n -k +2)
(n =k +9))pp,ss +2(k+1)(n -
k+2)(n—k+4)p,p,yn] -
3Gunity = 24,000 ~ 9,390 +

40p,.,p, +6(n +4)p, ,p,t,

Quir = (nlﬁf ; [(n =k +3)qp, o +
(n =k +1)pq, 0] +2¢,.p00.  (36)
Thus, for arbitrarily chosen constants p, and ¢, , from
(36) we have
by = -5q,9, + 90p0p396+ 80p,p, - 59,9, ’

3
q, = ?(‘]opl +.q,po) (37)

and so on.

Thus, for arbitrary chosen constants p, and ¢, ,
the other terms of the sequence {p, |7 ,and {¢q,} _,
can be determined successively from (35) and (36)
in a unique manner. This implies that, for (26),
there exists a power series solution (29 ) with the
coefficients given by (35) and (36).

4.3 The power series solutions to (28)

Similarly, we seek a solution of (28) in the
form of the power series (29). Substituting (29)
into (28) and comparing the coefficients, we obtain

recursion formula

1

ot D) (n 2y (n sy Dbt

pn+3 =

Z (n+ 1 =k)[=3ppris = @G0 +
i=o

20k +1)(n +2 = k)p,iPuirs +
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