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Abstract In this study, a novel approach to single image resolution reconstruction is proposed
based on nonlocal means, total variation-regularization, and sparse coding. Firstly, low-resolution
(LR) image is denoised by nonlocal means which preserves geometric structure well. Then, high-
resolution (HR) regularization-based component is obtained from up-scaling the LR image by using
a reconstruction model. Image generation process is combined with total-variation regularization so
that new image maintains part of the sharpness of the edges and some details. Meanwhile, the HR
learning-based component is reconstructed by exploring the sparse coding which explores the co-
occurrence relationship between LR training patches and their corresponding HR high-frequency
patches. The regularization-based component and the learning-based component are combined to
obtain an initial HR image. Finally, the global reconstruction constraint is applied to the initial
image for making the final HR image natural. Experimental results show that our method is natural
and robust.
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In many practical applications, high-resolution
(HR) images are often desired in many practical
applications such as video surveillance, biometrics
identification, medical imaging, and so on.
However, due to the limitations of physical imaging
devices, the images we observe are not always at a
desired resolution level. The apparent aliasing
effects often seen in digital images are caused by the
limited number of charge-coupled device ( CCD)
pixels used in digital device. Using denser CCD
arrays ( with smaller pixel size) not only increases

the cost but also adds more noises''’.

Moreover,
there are many low-resolution (LR) valuable images
and available videos. The goal of super-resolution
(SR) is to recover a high-resolution image from one
or a few low-resolution images.

In the SR literature, SR approaches are
classified into three groups: interpolation-based
methods' > | regularization-based methods™™® and
example-based methods' """

Interpolation-based methods upscale the size of
an LR image by estimating the pixels in the HR grids
via a base function”™*' or interpolation kernel*’.
This kind of method always performs well in low-
frequency areas ( smooth areas) but it cannot
recover high-frequency areas ( edge) because it
often blurs image along edges.

Regularization-based methods assume that the
high-frequency information lost in an LR image is
split across multiple LR images with sub-pixel
misalignments. There are many different priors used
in these methods, e. g. nonlocal means ( NLM)'®
and total-variation (TV)[S]. However, in practical
applications, it is hard to obtain these previous
priors. Moreover, if HR images are computed by
simulating the image formation process, these
approaches are limited'""” .

In example learning-based SR methods, the

local patches in the desired HR image and those in

the input LR image are assumed to admit a sparse
approximation over the same dictionary learned from
the HR and LR database. The missing HR pixels
can be learnt from low-resolution and high-resolution
pairs of examples in the database. Freeman et al. !’
first proposed a relation model between LR image
patches and corresponding HR image patches by
using the Markov network. Yang et al. '*' created a
database which combines LR image patches with HR
image patches and used sparse coding to reconstruct
HR images. Based on an observation that natural
images tend to contain repetitive visual content,
Glasner et al. "°' proposed a super resolution method
from a single image. Li et al. """ proposed a single
image super-resolution reconstruction method, which
was based on global non-zero gradient penalty and

non-local Laplacian sparse coding.
1 Our proposed approach

In this study, we propose a novel approach

based on nonlocal means, total variation-
regularization, and sparse coding. The overall
framework of the proposed approach is shown in Fig.
1. As shown in Fig. 1, firstly, LR image is denoised
by using nonlocal means ( NLM)"®" which preserves
geometric structure well. This denoised LR image is
used twice to produce two components in initial HR
image. The regularization-based component is
obtained from a reconstruction model with total
variation-regularization. ~ The regularization-based
component maintains part of the sharpness of the
edges and some details. Meanwhile, the HR

learning-based ~ componentis  reconstructed by
exploring the sparse coding which explores the co-
occurrence relationship between LR training patches
and their corresponding HR high-frequency patches.
Finally, the global reconstruction constraint is
applied to the initial image for making the final HR

image natural.
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1.1 Regularization-based component
reconstruction

In practical applications, the real images are
always noisy. In this study, we use noisy LR image
as the input to adapt to real-world conditions.
During the regularization-based component
reconstruction, LR image is denoised and upscaled.
1.1.1 Denoising by nonlocal means

We use NLM to denoise the noisy LR image.
This approach assumes that image content tends to
repeat itself within some similar neighborhoods
among natural images. Therefore, the similar
patches found in other locations provides more
information of the target patch. By averaging all
similar patches in the neighborhoods, the target
patch is denoised ®'"'.

The target patch is calculated by
z (i,j)gc'\’(k,l)w[k’l’l"]}y(L"])

2 (i.j)e:\’(k,[)w[k’lal,]}
where N (k,l) stands for the neighborhood of the

x(k,l) =

’

pixel (k,l) in the input image and the term w[ k1,
i,j] is the weight for the (i,;)-th neighborhood
pixel of pixel (k,l). The input pixels are y(i,j),
and the pixel value of output image in (k,[) is
x(k,l).

The weights w [ k, [, i,j] for each pixel are
computed based on both radiometric ( gray-level )
proximity and geometric proximity between the

pixels, namely

wlisjk,l] = fOV/(k=i)" + (1 =j)7) + exp

q q

NN [y(k+ml+n) —y(i+m,j+n)]*

m=-qn=-q N

2
20

(2)
where the former function f takes the geometric
distance into account and is monotonically non-
increasing. It may take many forms such as a
Gaussian, a box function, a constant, and others.
The latter computes the Euclidean distance between
two image patches centered around two involved
pixels. The size of these patches is (2¢ + 1) x (2¢
+ 1) . The parameter o, controls the effect of the
grey-level difference between the two pixels.

After NLM, the output LR image preserves
many low-frequencies and some high-frequencies of
input LR image. Besides, the output LR image is
denoised. Figure 2 (c¢) shows the denoised LR
image of “meadow” image.

1.1.2 Reconstruction model with total variation —
regularization

The output image of the previous step should be
upscaled to satisfy the demand.

For single image SR problem, the image
generation process of an LR image from HR image is
defined as

Y = DHX + ¢, (3)
where X and Y are the HR and LR images,
respectively, which are rearranged in lexicographic
order. D is the decimation operation, H represents
the blurring operation, and g is the system noise
which is always assumed as Gaussian noise ',
Solving (3) is an ill-posed problem'*'. There

exists an infinite number of solutions which satisfy
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(a) HR image

(d) regularization-based component

Fig.2 HR image ( “meadow”)

(3). Therefore, regularization is a useful method to
produce a stable solution. Besides, regularization
improves the rate of convergence.

A regularization term is usually implemented as
a penalty factor. One of the most successful
regularization methods for denoising and deblurring
is the total-variation ( TV ) method'”'. The TV
criterion penalizes the total amount of change in the
image as measured by the L, norm of the magnitude
of the gradient. Then the regularizing function

becomes

)?=argmgn||DHX—Y||§+A|| VX[ ,,

(4)
where A , a global parameter, balances similarity
cost against regularization cost. V is the gradient
operator.

We use a fast iterative shrinkage/thresholding
algorithm ( FISTA ) to solve this minimization

6]

problem''*’. Figure 2 (d) shows the regularization-

based component of “meadow” image.
1.2 Learning-based component reconstruction
Before the learning-based component reconstruction,
we need to train several over-complete dictionaries.
1.2.1 design of training databases
Clustering of the training image patch pairs is
linked to the effect of dictionary learning. The
collected patch pair is HR patch together with LR
patch.
Recently, extracting the local geometry
structure for the low-resolution image patch in order

to boost the prediction accuracy was suggested.

(b) noisy LR image

(c) denoised LR image

(e) learing-based component

decomposed by NLM + TV

There are many filters to extract the edge information

such as a high-pass filter'”’| a set of Gaussian

18]

derivative filters''®' | the first-order gradients and

second-order gradients of the paiches'*’. Here, we
use the LR feature patches, which are the first-order
gradients and second-order gradients, to replace the
original LR patches.

To  obtain  better HR  high-frequency
information, we use HR learning ( high-frequency)
component to replace the original HR patch. HR
learning component is obtained in the following
steps. Firstly, the HR image is downsampled by the
desired factor s and added Gaussian noise as the
noisy LR image. Secondly, the denoised LR image
is constructed by NLM. Thirdly, the regularization-
based component of HR image is constructed by
reconstruction  model  with  TV-regularization.
Finally, we can obtain the HR learning component
by calculating the residual between HR and HR
regularization-based component. Figure 1 shows the
decomposition process.

Once these training patch pairs are collected,
we divide these pairs into different clusters by the
dominant direction of LR patch. The patches with
similar dominant direction will be collected into one
cluster.

1.2.2 Couple dictionary learning

Sparse coding method is to find a sparse
representation of one signal in an over-complete
dictionary D. The dictionary is usually learned from

Let D

many training sets X = [«,,-,x, ] € R"™".
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4,
let $=[s,,",s,] € R"*" be the coefficient matrix.

Then,

,d,] € R"*" be the dictionary matrix, and

the objective function of sparse coding is

argmin{ | X -DS |} +a | S|,
t. ” di||2 SE l,i = 152,'.'9ks (5>

where minimizing | S|, is to enforce sparsity,

| X =DS || 3 is the empirical loss function, and the

parameter « balances fidelity of the approximation to
X and sparsity of the solution.

Let the sampled training image patch pair in the

j —th cluster be P = {X] Y.} | where X}, = {«,

.-+, «. | are the set of HR learning component

{%, yé,"', }/,,} are the

corresponding LR feature patches.

x
patches and Y] =
Joint dictionary
used to train two

training method is coupled

dictionaries for each cluster. Similar to the treatment

in Reb. [ 8
the HR learning component patch and the LR feature

1, the single sparse coding problem in

patch are
Dj}; = arg min{ || le —D/;.,S I f ta | S,
D).
(6)
and
Dizargff}lli?{ [ _D]}SHZF"'O‘”S”J,
J.

(7)
where DY, and D/ represent j — th cluster’ s coupled
dictionaries.

In order to force the HR and LR representations
to share the combine these

same codes, we

objectives

learning component and LR feature patch in vector

1
— and — balance the two
1 2

form, respectively. Here,

cost terms of (6) and (7). By (6) and (7), (8)

can be rewritten as

argmin{ | B, -D'S |2 +a |[S] |, (9)
Di,S
where
Di = TD; ,TD’
& = af ! 7)

NV

For a given test LR image, which is set as the
denoise LR image in our method, we sample patches
with overlap and extract four features of these
patches. Then, for each feature patch y, , we
adaptively select coupled dictionaries I, and D, from
all coupled dictionaries, by computing the dominant
orientation of y, to find the most similar cluster. We
compute the sparse coefficient s; under the proper
dictionary D/, and we can obtain the HR patch
estimation X’* = D’ s,. The whole HR learning
component is reconstructed by averaging all the
reconstructed patches such as X’* . Figure. 2 (e)
shows the learning-based component of “meadow”
image. Then the initial HR image X is obtained by
adding the reconstructed component and the learning
component.
1.3 The global reconstruction constraint
Unexpected artifacts are always found in the
initial HR image X, because of the simple addition
operation. Considering the image generation process
of an LR image from HR image, we find the closest
image to X, which satisfies the image generation

process
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X = argmin{ |DHX - Y ||> +¢ | X -X, |3},
X

(10)
where ¢ is regularization parament, X~ is the final

HR image, and Y is set as the denoised image.

2 Experiments

In our experiments, we perform eleven test

images to measure our proposed method by

magnifying them two times. All the images come
from the Berkeley Segmentation Dataset' "’
2.1 Experimental configuration

The noisy LR image is produced by artificially
adding Gaussian noise to original LR image. The
standard deviation of Gaussian noise is set to be 10.
We denote it as ¢.

In (1) and (2), the research zone N(k,l) is
limited to a square neighborhood of 21 pixels x 21
pixels. ¢ =1. 07 =0.40. The function fis set to be
constant, so that it gives no preference to adjacent
patches over distant ones. This makes f more robust
to various motion patterns.

In (3), the blurring operation H is set to be an
identity matrix.

In (4), global parameter A is set to be 0. 001
and Y is chosen as the denoised LR image.

In (5), parameter « is set to be 0. 15.

During the design of training databases, we have
trained 12 clusters in total. For each cluster, the
coupled dictionaries are trained from 50 000 patch pairs
randomly sampled from 100 training images. The sizes
of original LR training patch and the corresponding HR
patch are set to be 25(5 x5) and 100 (10 x 10),
respectively. So the LR feature patches which are the
first — and second - order gradients of original LR
training patch are set to be 100 (5 x 5 x 4).
Considering computation cost and image quality, the
dictionary size is always fixed at 512.

2.2 Results
For showing the effectivity of our proposed

method, we use different methods to magnify the

‘Boat’ image two times in Fig. 2. Figure 4 (a) is
the original HR image, Figs.4(b) to 4(e) are the
mages solved by using other methods, and Fig. 4 (f)
is the final HR image by using our method. The
input noisy LR image is produced by the generation
process in (3 ). To be convenient to calculate
PSNR, we firstly upscale LR image by bicubic
interpolation to fix the size of HR image. ( See Figs.
4(b) and 4(c)). However, Figs.4(d), 4(e),
and 4 (f) retain the same size as in Fig.4(a).

It is obvious that Fig.4(b) is very noisy. After
denoising Fig. 4 (b) by NLM, a smooth image in
Fig. 4 (¢) is obtained and its PSNR value also
increases. Figure 4 (d) is obtained by using (4)
and Y is set as in Fig. 4 (c). Figure 4 (e) is the
initial HR image which has been described in Fig.
1. Figure 4 (f) is the final result by using (10) to
optimize the initial image. It is easy to see that the
final image in Fig. 4 (f) is most similar to the
original HR image in Fig.4(a).

To certify the validity of our method, we deal
with eleven images as same as (b) — (f) in Fig. 2.

We show the PSNR results in Table 1.

Table 1 PSNR results at different steps

images (1) (2) (3) (4) (5)
1 25.70 27.14 27.80 27.41 27.75
2 24.38 25.10 25.55 25.73 25.91
3 22.79 22.91 22.67 22.68 23.04
4 25.18 26.31 26.47 26.26 26.65
5 24.62 25.65 26.20 25.82 26.11
6 26.82 28.54 28.82 28.50 28.69
7 18.74 18.74 19.09 19.49 19.68
8 24.77 25.16 25.17 24.95 25.36
9 26.49 27.81 28.15 27.25 28.12
10 27.47 29.99 29.82 29.58 30.02
11 24.19 24.62 24.98 24.93 25.28
average 24.65 25.63 25.88 25.69 26.06

Note: (1) original noisy LR image + bicubic, (2) denoised
image + bicubic, (3)regularization-based component, (4 ) initial HR
image, and (5) HR image treated by using our proposed method.

In Table 1, it is obvious that original noisy LR

image always gives the worst performance because of

@ http: // www. eecs. berkeley. edu/Research/ Projects/CS/vision/ grouping.
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(d) PSNR=26.47 dB

(b) PSNR=25.18 dB

(e) PSNR=26.26 dB

(c) PSNR=26.31 dB

(f) PSNR=26.62 dB

(a) original HR image, (b) original LR image after bicubic interpolation, (c¢) denoised LR image after bicubic interpolation,

(d) regularization-based component, (e) initial HR image, and (f) HR image treated by using our proposed method.

Fig.4 Sequence “Boat”

the noteworthy noise. The denoised image achieves
better results than original noisy LR image, which
indicates that denoising is effective. Because of
unexpected artifacts, the PSNR of initial HR image
is often smaller than that of the regularization-based
component. By using the global reconstruction
constraint, these artifacts are eliminated and the
PSNR always increases.

The regularization-based component sometimes

(a) image 1

(c) image 6

achieves the best performance. Figure 5 lists these
images. Among these images, the important high-
frequency information is destroyed by noise. When
we try to recovery high-frequency information from
the noisy LR image, it is hard to distinguish the true
noise. The

information  from learning-base

component has a low confidence so that the

regularization-based component without the learning-

base component achieves the best result.

(b) image 5

(d) image 9

Left: original HR images; Right: input noisy LR image.

Fig. 5 HR images whose regularization-based components achieve the best

performance and the corresponding noisy LR image

3 Conclusion

In this study, we propose a new approach based

on regularization-based component and learning-
based global

reconstruction to make the images natural. As the

component. We apply the
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input image is noisy, we denoise image firstly by

nonlocal means. Then the reconstruction-based

component is obtained by reconstruction model with

total variation-regularization. The learning-based

component is produced by sparse coding and the

initial HR obtained by adding the

image 1is

reconstructed  component and  the learning

component. However, the initial HR image always

looks unnatural. Hence, the global reconstruction

constraint is used.

Experimental results demonstrate the

effectiveness and robustness of the proposed

approach.
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