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Abstract

forced term to the differential dynamical systems for asymptotic stability are given. The first method

In this work, the system with forced term is considered. Two methods for adding the
is based on Lyapunov’s direct method, and the second method is a new method based on stability
analysis of Hopf bifurcations. The new method has a discriminant which is a rational expression
consisting of the coefficients in the original system. Some further researches for adding forced term
are also presented.
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Any actual system is always moving or working

under a variety of occasional and ongoing

When  the
disturbance,, whether the system can safely keep the

the

important

disturbances. system is  under

motion track or working condition, that is,

stability of the system is the most

consideration. The stability of a system includes the

s LM R Y

; Hopf 2~ X

stability of the equilibrium state and the stability of
any motion. The stability of a given motion can be
transformed into the stability of the equilibrium
point. The stability of equilibrium point is defined as
Lyapunov stability, uniform stability, asymptotic
stability, uniform asymptotic stability, exponential

asymptotic stability, or global asymptotic stability.
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The best general reference here is Ref. [1]. It is
very important for a system to have good stability
properties. However, some systems are not stable.
When a system is not stable, our idea in this work is
to add a forced term to the system, which makes the
system have good stability properties, such as global
asymptotic stability or asymptotic stability. We can
adjust the form of the forced term to make it
physically meaningful and be easily added to the
actual system. This idea comes from the study of
fuzzy logic control systems. Fuzzy logic controllers
was proposed long ago and applied successfully in

271 A comprehensive work on the

many applications
proof of stability of fuzzy logic control systems
fuzzy

represents one of the challenges in

811 . .
. This work is based on the research on

control
the fuzzy logic control systems. It is innovative to
add a physical forced term to the system for the
asymptotic stability. To add the suitable forced
terms, we propose two new methods, which are
dependent upon the analyses of the stability. For
this purpose, we introduce various methods for

studying the stability of systems.

1 Systems with forced term

The structure of a system with forced term is
presented in this section. Let X be the universe of
discourse and consider a system with x = 0 an
equilibrium point of the following form ;
x=f(x), xeR", f(x) = (f,(x), f(x),f,(x)".

(1)
If system (1) is not stable, we want to add the
forced term to the system (the external effect in the
actual problem) to make the system asymptotically
stable and have good properties. The problem we
need to study is the form of the forced term. In view
of the actual physical problems, for the convenience
of adding an external effect in the actual operation,
we assume that the form of adding items as

D(x) =b(x)u(x),

b(x) = (b, (x),b,(x), ,b,(x))",
where u(x) is a scalar function.

Then, we consider the stability of a system with

forced term of the form

x = f(x) +D(x) = f(x) +b(x)u(x). (2)
In the study of an actual physical problem, for the
convenience of adding external effects, the form of
b(x) in system (2) is given in advance. So the
next work is to look for u(x) which makes system
(2) asymptotically stable while b(x) is given in a

different form.
2 Stability analysis of general systems
with forced term

The stability analysis presented in this section
is based on LaSalle’ s invariance principle cited and

Refs. [12-15]. This

concentrated on the formulation and proof of

analyzed in section is
Theorem 2.1 that ensures sufficient conditions for
the stability of general autonomous system.

The Lyapunov function candidate V:R" — R,
V(x)

unbounded, and P e R"™ is a positive definite

= x'Px is considered. It is positive and
matrix. Then, because P is a positive define matrix
P = Q'Q, where Q is an upper triangular matrix in
which the diagonal elements are positive. Next we
introduce a kind of linear transformation y = Qx to
system (2), and then it becomes the system,

y =g(y) +eoy), (3)
where g(y) = Qf(Q7'y), ¢(y) = Qb(Qy),
and v(y) = u(Q7'y).

So we only need to obtain v(y) in this system, and
u(x) can be obtained by the linear transformation
y = Ox. Now we know V(x) = x'Px = y'y.
Consider the derivatives of V with respect to time

expressed in terms of (4) :

Q = V(x)
=20y + o+ 5)
=2(y'g(y) +y'c(y)v(y))
=G(y) +C(y)v(y), (4)
where  G(y) =2y'g(y), C(y) =2y'c(y).

The following sets are defined to be used in the
stability analysis;

C"=1{yeYl Cly) =0/,C"'=1y e Yl
C(y) >0},C" =1y eYl C(y) <0},
where Y is the universe transformed from X by
y = Ox.

Theorem 2. 1  Suppose that y = 0 is an
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equilibrium point of system (3), in other words,
x = 0is an equilibrium point of system (2). If the
following conditions hold ;

1) G(y) <0, Yy e C%

2)v(y) <- %,V}’ €

¢y == 4

C(y)’
Vy e C;
3)Set {y € Y| ) =0/} contains no state trajectories
except the trivial one, y(z) = 0,1 = 0.
Then system (2) is globally asymptotically stable in
the sense of Lyapunov at the origin.

Proof From the definition of V it results that
V(0) =0,V(x) >0,Vx #0and V(x) =x"'Pxr—w

as || x| — . Further it will be proved that Vis
negative semi-definite with respect to time by
employing (4). An arbitrary initial state vector X,
e X is considered. Theny, = QOx,. The following

three cases are possible.

Case 1; Ify, e C°, it results that

I./(xo) = G(yo) + C(J’o)”()’o) = G(yo) < 0.
Case 2:
Theorem 2.1 it results that

G(y,)
C(y,)

ﬁV(xo) = G(y,) + C(y)v(y,) < G(y,) +

C<y0>(-g82§)=o

If yo € C*, from the condition 2) of

v(y,) <-

Therefore

G(y,)
C(y,)

Case 3. If y, € C7, from the condition 2) of

v(y,) <- =>V(x0) < 0.

Theorem 2.1 it results that

G(y,)
C(y,)

:>V(xo) = G(y,) + C(y)v(y,) < G(y,) +

o=l

v(y,) =~

Therefore ,

G(y,)
C(y,)

In the above three cases it is obtained that

v(y,) =- —V(x,) <O0.

V(x) <0,Vx e X.

In conclusion, the derivative with respect to time of

the Lyapunov function candidate, V, is negative
semi-definite.

Because y = Qx, from the condition 3) we

know that set {x e X| V(x) = 0} contains no state
trajectories except the trivial one, x(z) = 0,: = 0.
The condition 3) ensures the fulfilment of LaSalle’ s
invariance principle. This justifies the fact that the
equilibrium point at the origin is globally
asymptotically stable. The proof is now completed.
The conditions 1) and 2) in Theorem 2. 1

guarantee that the function V is negative semi-

definite. The condition 3) proves that set {0} is the

largest invariance set in {x e X | V(x) = 0{. By
LaSalle”’ s invariance principle it has been guaran-
teed that system (2) is globally asymptotically stable
in the sense of Lyapunov at the origin.

The stability analysis algorithm ensuring the
stability of the systems with forced term is based on
Theorem 2. 1. It consists of five steps shown as
follows.

1) Give a general upper triangular matrix in which

the diagonal elements are positive,
[T (P
g . . g
0=10 g
U

Mo pxn

s ay,r,a,, > 0.

> “nn

2 ) Transform system (1) to system (2) by the linear
transformation y = @x and determine G(y), C(y)
and C°.

3) Apply the undetermined coefficient method to
determine the elements of Q by the condition 1) of
Theorem 2. 1 and then determine C* and C".

4) Determine v(y) so that v(y) < - ggi; fory e
C"o(y) =~ ggi; fory e C7, and c¢(y)v(y) —

0ify—0, andv(y) should fulfill the condition 3) of
Theorem 2. 1.
5) Use the linear transformationy = Qx to find u(x)
after v(y) is obtained.

Note that the construction of v(y) is based on
personal attempt. However, the verification and

complex computations can be implemented on a
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computer. The specific application of this algorithm

will be illustrated in section 6.

3 Stability analysis of Hopf bifur-
cations with forced term

A discriminant for judging the stability of Hopf
bifurcation is presented in this section. The stability
analysis of Hopf bifurcation with forced term is based
on the discriminant. Consider a system with Hopf
bifurcation ,

x =f(x) =Jx+F(x),x e R", (5)
where J is Jacobian matrix of system (5), f is
analytic, F(x) = (fi.fos="of.) "

Note that x = 0 is an equilibrium of system
(5). The function F and its first-order derivative
vanish at x = 0. Without loss of generality, we
assume that J is Jordan canonical form ( otherwise we
change J to Jordan canonical form by linear
transformation x = Ty ). Here, J has a pair of
purely imaginary eigenvalues * iw, at the equilibrium
x = 0. Without loss of generality ,we assume @, = 1
(otherwise one may use an additional transformation

!

t'" = w,tto change frequency w, to 1) ,and the Jordan

canonical form of Jacobian matrix of system (5) at

x =01s
DO 1 OD
J — H—l 0 OE’ A c R(n—2>><(n—2)’
Uo o 4t

where A is hyperbolic. For most of the physical
situations, we assume the unstable manifold is empty
(the eigenvalues of A only have negative real parts).
To give the following theorem for determining
the stability of n-dimensional system conveniently, f,
in (5) is written as
_ 2
Sfi = sux
o3
sig% + firs
_ 2
fr = 8%
3
$36%" + for s
2 2
Su¥ F SpXy +Spx %y + [k = 3,4, 0,
(6)

. . 2 2
where f|, does not contain terms like x,”,x,” ,x,%,,

2
+ S12%, + S13%,%,y + S14X1%X5 + S15%,%X3 +

2
+ S2%y + $23%,%,y + Sp4 X1 X5 + Sy5X7 X3 +

Ji

3 . . 2
X, %3 ,%,%3 ,%, , [ does not contain terms like x,”,

2 3 -
Xy X%y, %%y ,%,%5,%,, and f,; does not contain

terms like x,”,x,”,x,%,.

Theorem 3.1 For system (5),if A <0, then
the system will be unstable at the origin;if A >0,
then the system will be asymptotically stable at the

origin. A is given by the following formula,

1
“a(B0 s 8]0

n

I i

i=1

n

1 1
2 (?T/'IBJZ - TJQ(Bj() - jBﬂ)) +

iz
1 1
7(322522 + 312711) - (Bm + ?Bn)fn -

1 3
(Bzo _7321)722 - Z(slé + 55 ) (7)

where £, and £, are the coefficients before x,x; and
x%,%; in f; , respectively, 7, and 7, are the coefficients

before x,x; and x,x; in f, , respectively,

B = Syt Sn _Sn t 2513 = 8y
10 — 2 LR § B 6 ’
B. - Sy + 28 — 2sp,
12 = 6 ’
B = ATERIT! _ 2syy sy —sp
20 — 7 2 s P = 6 )
B. = 25y = 28y = 813
n = 6 ,
1 S(zl + S(zZ
BaO = 7Bu+l,0 + ) ,
o, o
B = alBa+1,| - 2Ba+],2 + S, — oS, t 25a3
.=
¢ a,’ +4 2(a,> +4) ’
B - 2By v aBi, 2y =25, -y,
, =
¢ a’ +4 2(a,” +4)
a =34,k +2,
B - Sp T Sk B = sy — s, + 28,
20— 2 s Py — 2 ’
o, 2(0,” +4)
25, — 25, — Qs
hl b2 3953
BbZ = 2 ’b :kl +39"',k2+2’
2(o,” +4)
B - S, S, B - a,s, — s, + 25/)3
0 2a s pl 2( 2 4) ’
, a,” +
2s . =28, — 05
1 2 353
BPZ = p2( 2p 4) . P = kZ +37“.1k37
OLP +
B. = ch+2,0 + CUBc+3,0
© = 2 2
0w +a
a(slfl + sc2> + w(sc+l,1 + Su+1,2)
2 2
2(w° +a) ’
2 2
B - —-dav, + (o + @ -4)v,
cl T ’

160 + (& + @ —-4)°
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dav, + (& + @0 —4)v,

B, =
2
‘ 160 + (& + 0> -4)* "
Vg = 2B(-+2,2 + ch+3,1 + ch+2,l —S3 t+
a(s, —s,) + w<5u+1,1 - 5(:+1,2)
2 s
Vo = — 2’Bc+2.l + (UB(-+3,2 + aBHz,z +5, —
1
Sa E(ascs + wsc+l,3) ,
B _ aBp+3,0 - wBHz,o
c+1,0 = 2 2
0w +a
a(sc+l,l + S{:+1,2> - (U(Scl + 352)
2(0° +a) ’
B _ 1 S T Sa
el T 2B, +aB, =B, - T )
s L I
erl 2 = -2B, +aB, - Bc+2,2 + ?Sﬁ >

c =ky + 1,k +3,-- )k, -1,
WO(Sgy +S400) +alsy +sp,)
2(w +a*)

—dauy, + (& +o° —4)uy,
B, = 2 2 2 2
16a” + (a +w” —4)
_dau, + (& +@° —4)uy,
216 + (P 0t —4)
alsy —sp) +w(5[z+1,1 _3{1+1,2)

2 ’

leO =

’

Uy == Sp

1
Up = Sp —Sq — ?(015,13 + w3(1+1,3) ,

—w(sy +5p) +0¢<3(1+1,1 +S{1+|,2)
2(w” +a*)

Bd+1,0 = ,

1 1
B,1+1,1 = ;( -2B, +aB, + 75(13) ’

1 -
B, = (Zde + aB, —u),d =ky +1,

w 2
ky +3, ks -1,
B = wq(sqn,l +s(,+1,2> +aq(sq] +5q2>
° Z(a)qz + aqz) ’
2 2
B - -dou, + (o, +o,” -4)u,
a = 2 2 2 P
16a,” + (o, +w,” = 4)
2 2
B _ 4aquql + (aq + wq - 4)u[]2
e = 2 2 2 2
16aq + (aq tw,” - 4)
_ aq(sql - sq2) + ‘Uq(sqn,l - Sq+1,2)
uql = - Sq3 2 )
1
Up = Sp —Sg — ?(aqs(ﬁ + quq+l,3> ,
B _ _wq(sql +3q2) +aq(sq+1,| +3q+1,2>

q+1,0 - 2(&)(12 + an) ’

_ 1 1

Bq+l,l = aTq( - ZB(,l + a(,B(,z + 73(]3) ,
1 s, — s,

Bq+1,2 = ;(ZB(IZ + anql _ (11712) ,

) 2
g =Fks+1,k +3,--,n-1.
Proof The normal form of system (5) was
given in Refs. [ 16-17] as follows,
r = Dyr + Dyr + Dgr + -+ + Dy + -+
= apr +asr tapr + ot ag g,
6 =1+D,0+D,0+Dsp+ - +Dyp+ -+
=1 +ayr +ayrt +ayr’® + 0 + azun”)rz" + e
(8)
Note that the stability of system (5) is the same as
system (8).
Hence we need to solve a,;, because a,r° =
D,r. Tt is known that the next work is to solve D,r.

We use perturbation analysis method. We begin

by introducing new independent variables according

to
T, =&tk =0,1,2,-
Then
dT dT dT.
P T A T AR A
=D, +eD, +&D, + -+, (9)

where the differential operator D, = 9/9T,.

Then, suppose that the solution of (5) in the
neighborhood of x = 0 is represented by an
expansion of the form
x,(t;8) = exy (Ty, Ty, ) + &x,(Ty, T, ) +

e (i0=1,2,3). (10)
Note that the perturbation parameter & used in (10)
is the same as that used in the time scales T, =
gt(k =0,1,2,--+). Substituting (9) and (10)
into (5) and balancing the like powers of & results
in the ordered perturbation equations. In the &' -

order perturbation equations, we get

D()zxn +x, =0,

X= r(leTza.”>COS|:T0 +¢(T1’T2’.”):|
= rcosf,

%y = Doxyy = = (T, Ty, )sin[ Ty +

@(T,,T,,++) ] =~ rsing.
In the & -order perturbation equation, we find that
%, has the form

X, = By + B,cos20 + B,sin26,i = 1,2, n.
(11)
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In the & -order perturbation equation, by
eliminating the possible secular term in x,, we get
D,r. From the first two equations in the & -order
perturbation equations,

Dyxys + Dyxyy + Dyxyy = x5 + fi3,

%5+ fo

(12)
Dyxyy + D%y + Dyxyy = =

we obtain
Dy’xys + x5 = — DyD,x,, — DyDyxy, — Dyxyy —
Dyxy + fo3 + Dofis.
Substituting x,, and x,, into the above equation, we
obtain
D,’xy5 + x5 = 2(Dyr - cosf) +
fas + Dofis. (13)
Note thatf;(z = 1,2,

01X Xy X (1 = 1,2, ,0).

sinf + rD,p *

,n) is in terms of x,,” ,x,,”
Because D,r only
appears as the coefficient of sinf, we only need to
consider the coefficients before sin@ in f,; + D,fis.
Thus we only consider the terms like x,x, ,%,,%,,
a0 (0 = 1,2,

3.
X11%i2 5 X1 X 5%y (i =1,2

,n) in f,;, and the terms like

-,n) inf;.
Substituting (11) into (13), we find

Doles T X3

=2(D,r - cosf) +

(3 (heene (o2 L))o

1
; (?le B,z -

1
?(Bzzfzz + BIZTll> - (BIO

sinf + rD,¢p -

1
+ ?Bu>§11 -

1

3 )
(Bzo - ?le)rn - I<S“’ + 326)]r3sm0 +g,

(14)

where g does not contain terms like sing.
To eliminate the possible secular term in x5 in
the right part of (14), it is required that the
coefficients of sinf and cosf equal 0, which in turn

yields

1 n 1 1
D,r = - ?ﬁ[ ; (?giZBiZ _fn(B,-o + TB“))-F

I 1
% (b =7a(8y - 5]+
£

1
?(Bzzfzz + BlZTH) - (Bm + ?Bn)gll -

1

3
(Ba - 3B )72 = (e ta)] (1)

Thus the next work is to get B, ,B,;, and B, and
solve x, in the & -order perturbation equations. By
using the method of harmonic balancing, we get B, ,
By ,B\,,By By ,By x5 , %5 and B Jo ’ /1 9B,2 (=3,
4,---,n) in the & -order perturbation equations.

Finally, we find that a,; = - %A.

In system (8) ,ifa,; >0, (A <0),
system is unstable at the origin;if a;; < 0, (A >

then the

0), then the system is asymptotically stable at the
origin. Because systems (8) and (5) have the same

stability properties at the origin,thus Theorem 3.1 is

obtained.
Remark Considering the length of this
article, a brief proof is given here. More detailed

proof and relevant details are given in our other
papers and in Refs. [ 16-17].
Consider a general Hopf bifurcation with forced
term expressed in terms of (16),
x =J(x) +F(x) +b(x)u(x), (16)
where J(x) and F(x) meet the
described in (5), b(x) = (b,(x),b,(x), .,

b,(x)", and u(x) is a scalar function.

conditions

Suppose that x = 0 is an
If the following

Corollary 3.1
equilibrium point of system (16).
conditions hold ;

1) Jacobian matrix of system (16) has a pair of
purely imaginary eigenvalues * iw, at the equilibrium
x = 0, and the other eigenvalues at the equilibrium
x = 0 are hyperbolic. In other words, system (16)
is the form of Hopf bifurcation,

2) The discriminant A of (16) solved based on
Then u(x) can be found
(16)

Theorem 3.1 is positive.

for a given b(x) to make system
asymptotically stable at the origin.

The stability analysis algorithm ensuring the stability
of the Hopf bifurcation with forced term is based on
Corollary 3.1 It consists of the steps given as follows.
1) Assume that u(x) = a, + ax + x'Bx + ¢,x,° +
¢,%," , where

va,), X = (x,,0,,,x,)",

,n) are constants, and B is

a = (a;,a,,"
Qp, € a029ai(L = 1,2a"'
a square matrix of order n.

2 ) Substitute u(x) in (16 ), and apply the
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undetermined coefficient method to determine u(x)
by using condition 2) of Corollary 3. 1.
3) Check that system (16) with u(x) solved is a
Hopf bifurcation, and has an equilibrium x = 0.
Else go to step 2).

The application of this algorithm will be

illustrated in section 6.

4 Further explanation for the stability
analysis of systems with forced term

It is easy to find the form of adding forced item
in the actual operation by using our two algorithms.
For a general system, we can always find u(x) when
b(x) has some certain forms. However, sometimes
we can not find u(x) when b(x) is given. This is
what we need to explain in this section.

Firstly, we show what form b(x) has when
u(x) can always be found.

Theorem 4. 1
equilibrium point of system (1). In system (2), if

Suppose that x 0 is an

b(x) is given by b(x) = Ax, where A is a positive
or negative definite matrix, then we can find u(x)
such that system (2) is globally asymptotically
stable in the sense of Lyapunov at the origin.

Proof Based on the algorithm mentioned in
section 3, we can prove this theorem easily. We
assume that P = I(I is identity matrix) by running

step 3) of the algorithm in section 3. Then

y=x, V(x) =2 = 2"(f(y) +Ay - 2(p)),
G(y) = Zny(y) ,C(y) = 2yTAy. If A is a positive

definite matrix, then C(x) > 0, forx # 0. Hence

we get

" =1lyeYly=0,C"=1{yeVYly=#0},

C™ = ¢.
Then we will find v(y). Because v(y) <

_G(y) . .

c(y) fory € C*, we determine v(y) by v(y)

G(y) yf(y) .

< - = - = for C" so that v
C(y) y'Ay Yy € (»)

fulfills condition 3) of Theorem 2. 1.
yf(y)

4 -
y Ay
&, where g is an arbitrary positive number. Then

c(y)v(y) = Ay - v(y)
= A * (yly(y> ’y27j(y> ,"'J,LU()’»T

For example we determine v(y) = -

_¥fO)

}’2( yTAy 8) ’
T
S R IR
y Ay
We defineA = M'M,z = My, where M is an upper

triangular matrix in which the diagonal elements are

positive. Hence we assume that

mn my,
O . g
M' =10 O
= " H
O m. U

Then, from Cauchy-Buniakowsky-Schwarz inequality
it results that.

[ (MilZ)T I = «/(mllzl +mpz, + o0+ mlnzn)2 + o+ (mmzzn)2
= \/(mnz + ot m]nz)(zlz + o +z}12) + oot mmzZznz
< \/n(m“2 + o+ my,’) «/(zlz +o4z0),
T
yf(y)
=y (- g
yi( VA )
_ )
y'Ay ’
T
< w + ‘ ;
y Ay
< ‘(miizi +m 2, oot mm%) : (M_lz>l - f(y) ‘
h 12"z + ey,
‘(mii,zi, + M2, oot m,z,) ‘ ”(MilZ)T [ - ||f(.)7) [
< + ‘gyi

F&4
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- x/mzzz + o+ mmz «/Zzz + oo +Z/L2 \/n(mllz + o +m1nz) \/(112 + o +zn2> \/flz + +fn2 + ‘

\sz\ E&Y;
B R U S N R ST AL N

F#1

i

= \/miiz +o b m,” «/n(mnz +o
Hence ¢(y)v(y) —0ify —0.

YY)
y'Ay

the conditions of Theorem 2. 1. Becausey = x, we

find that

In conclusion, v(y) = - — & meets all

x f(x)

x'Ax

positive number.

u(x) =- - &, where g is an arbitrary

If A is a negative definite matrix, the proof is
similar. So we say that we can find u(x) such that
system (2) is globally asymptotically stable in the
sense of Lyapunov at the origin. The proof is now
completed.

Next, we give some counterexamples to show
that we can not find u(x) for some b(x).

Counterexample 4. 1

D)

Suppose that the forced term is given by

Consider a system in

the form

X

D(x) :( )u(x) =b(x)u(x). (18)

- x,
Then we add the forced term (18) to system (17),

and we get a system with forced term as follows,

- e

We can not find u(x) so that system (19) is

globally asymptotically stable in the sense of
Lyapunov at the origin. Next we give the proof.

Proof

{9&, =x, +x,u(x) (2%, = x,%, +x,5,u(x)
=

%, = %, —xu(x) lxx, = x,x0, —x;x,u(x)
: : X%

=%,%, + 6,5, = 2x,%,= — + — = 2=lnx, +
X X

Inx, =2t + elnx x, = 2t + c=xyx, =
eZH—(- — CGZf (20)

where ¢ and C are constants. Hence we get that x,x,

b

+mt) A

+er2 + ‘gyi

= Ce”

stable in the sense of Lyapunov at the origin, then

If system (19) is globally asymptotically

%, (t) >0, x,(t) —0, ast— o . However, x,x, =

2t
Ce”" — oo, ast— .

b

So a contradiction appears. The proof is now

complete.
Counterexample 4. 2 Consider a system in

the form (17), suppose that the forced term is given

by

1

D(x) =( 1)u(x) = b(x)u(x). (21)

Then we add the forced term (21) to system (17),

and we get a system with forced term as follows,

(zl) - (z1)+ (_ll)u(x). (22)

We can not find u(x) so that system (22) is

globally asymptotically stable in the sense of
Lyapunov at the origin. Next we give the proof.
Proof
{9&1 =x, +u(x) . .
. =K, X, =% x>
Xy =y —u(x)
X+
=2 = Isdn(x, +x,) =1+
% + X,

(23)

where ¢ and C are constants. Hence we get that x, +

%, +x, = e = Ce',
x, = Ce'. If system (19) is globally asymptotically
stable in the sense of Lyapunov at the origin, then
x,(t) =0, x,(t) >0, ast— oo . However, x, +x,
= Ce' > >

,ast— oo,

So a contradiction appears. The proof is now

complete.

5 Some examples

This section is dedicated to the validation of the
theoretical results derived in sections 3,4, and 5.
Firstly, we give a nonlinear system with forced

term, the inverted pendulum on a cart system. This
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simple mechanical system is representative to model
a class of attitude control problems, and the goal is
to maintain permanently the desired vertically
oriented position. Since the inverted pendulum is a
nonlinear system, the basic balance equations for the
system are derived firstly and put into the standard
state-space form. Given an inverted pendulum
mounted on a cart as shown in Fig. 1, the first
principle nonlinear equations are applied in the
sequel. Assuming that the rod is massless and that
the cart mass and the point mass at the upper end of
the inverted pendulum are denoted as M and m,
respectively, the gravity force acts on the point mass
at all times.

Fig. 1,
0(t) is the tilt angle with respect to the vertical

The coordinate system is defined in

where x (1) represents the cart position and

upward direction.

mg
/ S
M
/
/ 7 )/T/( 7
X 1

Fig.1 Variables related to the inverted pendulum

on a cart system

The differential equation that describes the
behavior of the simple system is usually written as
(m+M)-FP-6-(m+M)-1-g-sin(9) =0,
(24)
where M is the mass of the cart, m is the mass of the
pendulum, [ is the length of pendulum ( distance to
the center of mass ), x is the cart position
coordinate,, and @ is the pendulum angle with respect
to the vertical position.
The state vector consists of the angle § and the
angular velocity of the pendulum 6. Therefore, the
two state variables are defined as z, and z,, where z,

e [-80,80],2 € [ -30,30],z(1) = 6(1),
5(1) = 0(1).

terms of state variables,

In order to write equation (24 ) in

they are substituted

resulting in

z = f(2), (25)

z, D z 0O
where z = ( ) — state vector, f(z) = 0
2, %%smzl E

Obviously, system (25) is unstable in the sense of
Lyapunov at the originz = 0. In other words, we can
not ensure the upright stabilization of the pendulum
aiming at the setpoint value of z, z = 0. In order to
make the inverted pendulum on the cart system
asymptotically stable, we add a forced term to
system (25),

and the system with forced term is

expressed in the form

z = f(z) +b(2)u(z), (26)

2
where z = ( ) — state vector,

2,
D z 0O 0 0 0
- 0 =
f(z) = Dg D,b(z) H_ 1 H
syl 0 (m+ 20

Note that b(z) is given according to the physical
meaning.

The algorithm presented in section 3 will be
applied as follows, in order to find the value of u(x)
at which system (26) is stabilized.

Step 1: Give a general upper triangular matrix in
which the diagonal elements are positive,
0= (a“ alz); ay,ay > 0.
Ay

Step 2. Transform system (26) to system (27) by

the linear transformation y = Qx, and get the
expressions of G(y) ,C(y), and C°,
oo, +galzsin(L ap yz)g
()’1) _ Ebﬁ ! Ay Ay Ay E_I_
¥ 84 . ( 1 ap ) H
si| —y — ——y,)
U ! allyl a’lla22y2 U
O. % 0
O (m+M7PO
0 o(y), (27)
0 o) 0
. (m+ M) 8

V(Z> =20y, + ¥20,)

ay
= 2[79”19’2 ( Tapy, t éZazzyz)'
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. 1 A,
[y, = )]
ay : a8y :

2

W<yla12 + ¥2ay)0(y), (28)

a
G(y) = Z[éylyz + (%‘llzyl +%a22y2)'

sin(Lyl _ e yz)]’ (29)

ay a8y
2

C(y) =- m(%

ap + %%2) ’

a
C=lyeYliy == "ni, (30)
2

2!

where Y = [ — 80a,, - 30a,,,80a,, + 30a,] X
[ - 30a,,,30a,, ].

Step 3: Apply the undetermined coefficient method
to determine the elements of @ by using condition 1)
of Theorem 2. 1. The condition is that G(y) < O for

. a .
Yy e C°. Next, we substitute y, = — —>y, into
Ay

(29) and get

a
G(y) = 2[&3’19’2 + (%‘112}’1 +§“229’2)'

. 1 a,
Sm(iﬂ - yz)]
ay a1 Ay)
_ 2[ _anap

2 3’12 +%(“12Y1 —ayy,) *
Ay

2
(1 ap
sinf =y, + 21
@n Ay Ay
2aya,, ,
== 2 V1 (31)
Ay
In order to decrease the complexity, we assume
a, =ay, =1,a, =0sothat G(y) <Ofor Vy e
C°. Next, we substitute a,, = a,, = 1,a,, = 0 into

(28),(29), and (30),

V(z) = 2(%71 +5:52) =200y + %yzsinyl)-

2
mw}(ﬁ, (32)

C(y) = - G(y) =2(yy, +

2
(m +M)l2y2’

. 33
%yzsmyl ), (33)

" ={yeVYly, =0},
and we also get

C"={yeYly,<0},C" ={ye¥ly, >0},

where ¥ = [ = 80,807 x [ —30,30].
Step 4. Determine v(y) so that

v(y) $—€8}}; =1(m +M)(y,l +gsiny,) fory € C*,
v(y) B—ggg =1(m+M)(y,l +gsiny,) fory € C”,

c(y)v(y) —0fory —0. Thus, it can be taken
v(y) =1(m + M) (y,l + gsiny,) +y, (34)

Step 5. Check that v(y) fulfills condition 3) of

Theorem 2. 1. By substituting (34) into (32), the

derivative is

V(Z) = 2y2(y1 +£siny1 - v(y))

1
! (m +M)P

2

_ 2
- Y2

C(m+ M)

with V(O) = 0. Assume that there is a trajectory
with y,(t) = 0 and y,(t) # 0. Then

L R S
ls <y1<t)) (m+M)12
.
(m+ M)

[I(m + M) (y,l + gsiny, (1)) +,]

1
T 70 Y

which means that y,(t) can not stay constant.

%9/2“) v(y)

Lrin () -

== N

Hence, y(¢) = 0is the only possible state trajectory

for which V(z) = 0. Sowv(y) fulfills condition 3) of
Theorem 2. 1. The set {y € Y| Q =0} contains no
state trajectories except the trivial one, y(t) = 0,
t=0.

Step 6: v(y) has been obtained. Find u(z) by
using the linear transformation y = Qz, (y = z).
Thus, u(z) =1I(m + M) (z,l + gsinz,) + z,.

To cnclude, the system with forced term (26)
designed here is globally asymptotically stable in the
sense of Lyapunov at the origin. Note that u(z) is
equal to the externally wx-directed force, u = F,
which is presented in Fig. 2.

Next, we consider a system with Hopf

bifurcation in the form

MO O% O O +x%0
%25: E_ Xy §+ a X, E (36)
Lk O 0

For system (36), we find that A = -1 < 0. Thus
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Fig.2 Variables related to the inverted pendulum on a cart

system with forced term

we can know that system (36) is unstable according
to Theorem 3.1. Then we will add a forced term to
system (36) so that the new system with the forced
term is asymptotically stable at the origin. We
assume that the new system with forced term is

expressed in the form

MO O% O O +x,%,0 Ef?(x)D

000,00 » 0.0,
a‘aalaaxl ElER

- x, U 0 b, (x)O
(37)
Without loss of generality, for simplifying the
calculation, we assume that b,(x), (i = 1,2,3)
here is given as constant. Thus system (37)

rewritten as follows,

00 O% O D’Cl +xx2|:| 0

%ﬁ: E- X, % E + % %m. (38)
e, 0 O-,0 O 0p, O
We next find u(x) so that system (38) is
asymptotically stable at the origin by our algorithm in
section 4. Because the system is simple, we can
assume that u(x) = ax,” (a is constant) and

(38).

undetermined coefficient method to determine u(x)

substitute u(x) in We apply the

using condition 2) of Corollary 3. 1. Based on the
calculation, we know that system (38) will be
asymptotically stable at the origin, if the following
condition holds

(2b,a +1) (bya +1) <0. (39)
Thus, if b, = 1, (i = 1,2,3), we can find u(x)

=- lxlz so that system (38) is asymptotically

3

stable at the origin.

6 Conclusions

We first introduce the system with forced term.
Next, an approach to the global asymptotically
stability analysis of general system with forced term
is proposed. The discrimination method for an n-
dimensional system stability is given, and an
algorithm to the asymptotically stability analysis of
Hopf bifurcation with forced term is developed
beased on this discrimination method. Next, a
theorem which shows what form of forced term can

which

show that some forms of forced term can not be found

certainly be found. Some counterexamples,

for a general system, are given. Some examples

show how the stability analysis algorithm suggested
here can be applied to systems with forced term. In
this study, we give two methods for adding the
forced term in theory. Scholars with a wealth of
physical knowledge background can further study
some specific forms of forced term, which are easy to
add for the actual physical problems. Further we will
prove that the stability approach in this work can be
applied also in situation where the system has an

equilibrium point different from the origin.
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