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Abstract Time-homogeneous diffusion process plays an important role in the financial market, and
it is widely used for describing the stochastic dynamics of the underlying economic variables. In this
work, we study nonparametric estimation of the drift and diffusion functions for the time-
homogeneous diffusion process, and propose a new nonparametric regression technique based on
higher-order approximations, which is called B-spline approach. The nonnegativity of the diffusion
function is guaranteed by the restricted B-spline method. Our simulation results show that our
method indeed outperforms the local polynomial method.
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In the last decades, various well-known diffusion coefficients of the processes. We generally
financial models based on the time-homogeneous consider the time-homogeneous Markov process { X, |
diffusion processes have arisen. In this work, we are given by the stochastic differential equations
concerned about how to estimate the drift and dX, = u(X,)dt + o(X,)dB,, (1)
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where {B,,t > 0} is a standard one-dimensional
Brownian motion, and u( +) and ¢ ( ) are the drift
and diffusion coefficients, respectively, dependent
on {X,}. There have been a great amount of studies
on parametric methods to estimate w( - ) and
PER

methods is that the specific parametric forms of u( +)

One of the major limitations of these

and g( +) have to be assumed first. In order to
model more complex drift and diffusion functions and
reduce the bias of the estimators, nonparametric
regression techniques have been introduced in this
area. Florens-Zmirou'*' first proposed nonparametric
estimation with discrete sampling observations for the
diffusion term, while the nonparametric kernel
estimators of the drift and diffusion functions of a
stationary process based on a set of discrete sampling
observations were developed by Jiang and Knight'*'.

L]

Stanton""" constructed the first-, second-, and

third-order approximation formulas for w( - ) and
which  the

expectations estimated by Nadaraya-Watson kernel

o( +), in unknown conditional
regression were given, and claimed the superiority of
higher-order approximations. By deriving the higher-
order approximations and computing the asymptotic
variances, Fan and Zhang'"' concluded that higher-
order approximations could reduce the numerical
approximation errors of asymptotic biases, but the
asymptotic  variances  would  escalate  nearly
exponentially with the order of approximation. To
overcome this difficulty, they adopted the local
polynomial techniques to estimate the drift and
diffusion functions and applied such techniques to
some well-known short-term interest rate models. It
turned out that this approach might produce the
negative results for the diffusion functions when the
higher-order approximations were used. To ensure
functions,

the nonnegativity of the diffusion

[8]

Ziegelmann'® and Yu and Jones'®' proposed positive

nonparametric conditional variance estimators and
Xu'"" proposed reweighted functional estimation of
the diffusion coefficient based on reweighting the
estimator. In

conventional ~ Nadaraya-Watson

1

addition, Yu et al. """ developed the log P-splines

and local log-linear method to semiparametrically

estimate a class of time-inhomogeneous diffusion
processes. Due to the heavy reliance on the
logarithmic transformation of the diffusion function,
which brings additional bias term, the method is not
asymptotically equivalent to the local linear
estimator.

In this work, we make use of B-spline basis
functions to estimate the drift and diffusion functions
based on higher-order approximations, and compare
it with the local polynomial techniques. Our
simulation results show that the B-spline method

indeed outperforms the local polynomial method.

1 The estimators of the drift and
diffusion functions

We introduce the estimators of the drift and

functions  based on

. . [7
approximations .

diffusion

higher-order
Given a time-homogeneous
diffusion process {X,| satisfying (0.1) and an
arbitrary n + 1 order continuous differentiable
function f( +), the conditional expected increment

can be expressed as
E[f(XH-A) _f(Xt) l Xz] = Lf(Xt)A +
%[ff()(tm2 +oee nl—‘L"f(Xt)A” +0(A™),
(2)
where the infinitesimal generator £ of the process
{X,} is defined as

Lf(x) =f(x)p(x) +%f’(x)02(x)- (3)

Setting f(x) =x - X,and (x —=X,)”in (3), we have
Lf(x) =pu(X,) and Lf(x) = a'z(X,).

Furthermore, we rewrite (2) at the different
time steps jA,j = 1,---,k, and get a kth-order

approximation scheme
I T a B ) 1K)~ £70X,)
(4)

" Lk+1f(X>
. ) - ke ) Ak
with the approximation error ( — 1) k+1) A"+
k+1 i+1 k . .
O(A™ ), wherea,; = (-1)’ (.)/],] =1,k

J
(see Ref. [7] for details). Setting f(x) = x - X,

and (x — X,)* in (4), we reach the kth-order
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approximation schemes of u( +) and o ( +)

1 « .
IU’(X1> = ZZ ak,jE(XHjA - Xl l Xz) + O(Ak> 5
j=

O-Z(X;) = %_;ak,jE<(Xx+jA _Xt)2| Xr) +
0(A"). (5)
2 B-spline techniques

Fan and Zhang'”' proposed the gth-degree (=
0) local polynomial techniques for estimating the
conditional expectations in (5), and computed the
asymptotic variances of nonparametric estimators. In
this section, we will adopt B-spline techniques to
estimate u( +) and o (+).
2.1 Estimation for x( <) using B-Spline

Our goal is to obtain the smooth function u(x)
= E(Y, | X,). To this end, we fit the discrete
(n-k) pairs of synthetic data (X,,Y,),X, € [a,
Bl,i=1,-,n—-kbythe model Y,, = u(X,) +e;,

5
where Y, = izf a,; (X (ja — Xy). Letp, be the
]=

order of the B-spline and define a sequence of knots

a=x =2, = =%, <K, < <KX, =
X, .52 = = Xy, = Bon an interval [a,B].
Then w(x) can be expanded in terms of B-spline
basis functions as u(x) = B,(x)a, wherea = (a,,
~a,), Bi(x) = (B (x),,B, (x)), m =
Jy +p,, and B;(x) is defined as

Bj,l(x) = {

1, x < - <uy,
0, otherwise.
X - x;
- J
B.f,pl (x) = 'Bj,pl—l (x) +

Fjapy-1 =%

X - X
j+p
: Bj+l,m*1<x) ’

Xivp, = i1
forj = 1,---,m, (the convention x/0 = 0 is used).
When p, is chosen as the order of B-spline basis
functions, B,(x) = B;, (x),j = 1,-+,m, for the
simplicity.

To avoid the excessively “wiggly” estimated
curve ,Ll(x) , we take the roughness penalty a’'R,a
into account'?’. Then the coefficients a; can be
obtained by minimizing

PENSSE(a) = (Y -H,a)'(Y -H,a) + A,a'R,a,
(6)

where Y =

(YIA’“'9Y(11-I¢)A>,’ R, =
[°B () DB () dx, H, = (B,(X,),,

B (X(,4))', D’ is the second-order differential
operator, A, is the smoothing parameter which
controls the smoothness of a fitted curve.

In this work, we choose the best value of A, by
minimizing GCV (A, ) ( generalized cross-validation)

RSS(A,)

1= (n-k) (S, )1
where RSS(A,) = (Y - H,a)'(Y - H,a) is the
residual sum of squares and the smoother matrix of
S, =H (HH +)\R,) “H|, tr(S,,) is the trace
of §, . By minimizing (2.8), we get the penalized

GCV(A,) =

B -spline regression estimator of the vector of
(H)H, + A\R))'H|Y, and

furthermore reach the estimator for the drift function

coefficients a =

p(x) = B,(x)a = B, (x) (HH, + \R))"H}Y.
(7)
2.2 Estimation for o ( -) using B-spline
with nonnegative restrictions

Similarly, the square of diffusion function
o’ (x) can be also expressed as a linear combination
of the B-splines B;(x) in the form o (x) =
B,(x)c, where ¢ = (¢, +,c,), By(x) =
(B, (x),,B,,(x)), my =], +p,, J,and p, are
the numbers of interval knots and the order of B-
spline, respectively. In order to ensure the positivity
of ¢ (x) , we impose the reasonable constraint ¢ =
0, (j = 1,-,m,) due to the property of the
coefficients ¢; of B-spline B;(x) that there are no
more sign changes in ¢’ (x) than those in the
sequence c;.

Under the constraint ¢ = 0, the estimation of ¢
can be achieved by the following optimization
problem with a linear inequality constraint
minimise — (Z - H,¢)'(Z - H,c) + A,¢'R,c
with ¢ =0, (8)

(ZlAﬁ.“’Z(u-k)A)/a Zm =

1 - ‘
XZ{%,,-(X“W.M _Xm)zy i=1,,n-k R, =
=

YA =

where

jDsz(x)DzB’z(x)dx, and H, = (B,(Z,,),",

BZ(Z(n—k)A>)/7
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The smoothing parameter A, can be chosen by
minimizing GCV(A,) ,
RSS(A,)
(1= (n -k "u(s,)’
where RSS(A,) = (Z -H,¢)'(Z - H, ¢) is the

GCV(A,) =

residual sum of squares, ¢ is the estimator of ¢, and
the smoother matrix S, = H,(H,H, + \,R,) H,,
and tr(S,)) is the trace of S, .
2.3 Choosing the order k of approximation
According to the view of Stanton'® | the
approximations to the drift and diffusion functions
converge pointwise to u( +) and o(+) at a rate A",
and the first-order approximation performs well when
the data are sampled weekly or more frequently.
However, as the frequency of data decreases, the
approximation error of the first-order approximation
increases. In order to reduce asymptotic bias of the
approximation error, Fan and Zhang”' proposed
higher-order approximation method. However, the
asymptotic variances of such approximations escalate
nearly exponentially with the approximations order.
In this work, we balance the asymptotic bias
and variance by choosing £ = 1 for the data sampled
weekly or more frequently and opting for the second-
order approximation when the sampling frequency
decreases or the data over a small range of values.

2.4 Selection of the number of knots and

order p

Ruppert'"*' pointed out that the number of the
interval knots was not so crucial as the penalty
parameter A. When the chosen number of knot is
enough to fit the feature of data, any increase in J
will have little effect on the fitting result. Moreover,
the computation time will increase as J rises. As a

al, 4]

statistical criterion BIC to select a suitable J. Apart

trade-off, Yoshimoto et proposed  the

from BIC statistical criterion, one might use a simple

default value. In Ref. [13], Matt Wand suggested
that min( [nT—k} ,35) interval knots were chosen

([x] is the integral part of x), where n is the
number of observations, and k is the order of

approximation.

To simplify the computation, we set J, = J, =

n-k
4

knots. This turns out not to affect the results. Other

min( [ 1,35) and choose equally spaced

choices of the number of knots have also been tried,
and similar results display.

As for the selection of p, we choose p, = p, =
4. The reason for such selection is that the
simulation results show the order 4 B-splines fit the
drift and diffusion functions well enough and the
higher order spline functions will increase the
computation, which overwhelms the approximation

precision.

3 Simulation

In this section, we apply our proposed method
to three examples. Then we compare our method
with local polynomial method. To assess the
performance of the two estimation methods, we use
the following two measures'"”’.

Measure 1 Mean absolute deviation error
MADE(g;) =m™ Y | Zy - 0o/,
=

Measure 2 Ideal mean absolute deviation

error

m

IMADE(a7) =m™ Y | ol -0 |,

i
i=1

where m is the length of the testing sample, ¢, is the
estimation of the volatility, and o, is the true. These
measures are used to assess the performance of
different procedures for estimating the volatility.

However, for the real data analysis, Measure 2 is

not applicable. For the drift function, these
measures can also be employed.
3.1 Cox-ingersoll-ross squared-root

(CIR SR) model

In this example, we consider the well-known
CIR SR model

dX, = (a +BX,)dt + oX\?dB,,t = 1,, (9)
where { X, | is a measurable Markov process. B, is a
standard Brownian motion. Our simulation data are
generated by using the discrete time order 1. O strong
approximation scheme (see Ref. [ 16 ] for details)

as follows:
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=X, +[a+BX, -470"]A +
27 [Xr,- + (a +BX, -47"¢)A +
o (X)) e VA1 + (X)) e VA,

(10)

where { g, ]/} are independent and standard normal

Liv

fori =1,--,n-1,

variables, x, = max(x,0), the time points ¢, < -

< t,, are equally spaced, and A is the step size.

In order to compare with local polynomial
techniques, we adopt the same values of model
parameters for simulation; « = 0.018392 5, 8 =
-0.21459, ¢ = 0.078 30, and A = 1/52. To
begin with, a sample path of length 5 000 is

local linear estimate of drift
0.02—— T T T ! .

002 004 0.06 008 010 0.12 014 0.16

B-spline estimate of drift

-0.01}

-0.021 J

-0.03 ; ; ; ; ; ;
002 004 006 008 010 012 014 016

generated by the discretization scheme (10) and
setting the initial value X, = 0.1, where the first
4500 observations are in-sample data and the
remaining 500 observations out-sample data. Then
the estimators of the drift and diffusion functions are
calculated respectively through kth-order approximation.
Here we choose & = 1, as the simulation data are
weekly ones. For the purpose of comparison, we
simulate 100 sample paths with range interval 7 =
[0.03,0.15], and set the number of interval knots
Ji = J, = 35 on the interval 7. The simulation
results are presented in Fig. 1 and Table 1.

local linear estimate of diffusion
0.035 T T T T : :

0.030

0.025

0.020

0.015

0.010 : * * * * *
002 0.04 0.06 008 010 0.12 0.14 0.16

0.035 B—.spline elstimate (.)f diffusjon

0.030 -

0.025

0.020

0.015

0.010 * * * * * *
002 004 006 0.08 010 012 0.14 0.16

Solid; true function, dashed-dotted; the median of the estimates, and dashed: the 25th and 75th percentiles of the estimates.

Fig.1 Estimated drift and diffusions among 100 simulations for CIR SR model

Table 1 Comparisons between B-spline and

local polynomial methods

empirical local

measre formula polynomial B-spline

Drift MADE ave 0.1787 0.1250
std 0.5294 0.0179

IMADE ave 0.058 2 0.003 9

std 0.5276 0.0030

Volitity MADE ave( x107%) 9.1530 4.8193
std( x107%) 4.3000 0.1407

IMADE ave( x107%) 4.5325 0.603 3

std( x107%) 4.3000  0.1451

In this example, smoothing parameters A, and

A, are chosen as 1 x 107 and 1 x 107" by

minimizing GCV(A,) and GCV(A,), respectively.
The bandwidth parameter for the local linear
estimation is generated from the rule

h =C xstd(X,, (11)
where C = 6. In Table 1 it is shown that the B-
spline method possesses certain superior performance

because of its lower MADE and IMADE.
3.2 Geometric Brownian motion ( GBM)

-1/5
7X(n—k)A)n s

model
We

geometric Brownian motion determined by

consider another familiar example of
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X, = (u +%02)Xtdt +oXdB, .t =1, (12)

where B, is a standard one-dimensional Brownian
motion. The used parameter values are the same as
these in Ref. [7]. u =0.087, o =0. 178, and the
state value X, = 1,A =1/250,h =2 xstd(X,, -,
X(n—k)A ) n”?

order 1. 0 scheme, we generate 1 000 sample paths

Using these values and following the

of length 1 000 observations,
~X, +(u+2"0 )X, A +0X, e VA +
270X, (&l - 1)A. (13)

For each simulation, we set the first 900 observations

sl

as in-sample data and the remaining observations as

out-sample data. In this example, smoothing
parameters A, = 0.01 and A, = 0.005. Other
parameters are the same as these in subsection 3. 1.
The results are summarized in Table 2.
3.3 Verifying the nonnegativity of diffusion
function

In this part, we generate 600 observations from
model (9), and use the first 500 observations as in-
sample observations and the remaining as out-sample

observations. The simulation data set is presented

Table 2 Comparison between the two methods

measure empirical focal . B-spline
formula polynomial

Drift MADE ave 7.3380 3.3997
std 18.526 0 1.2738

IMADE ave 4.909 8 0.3571

std 18. 662 0 0.3386

Volitity MADE ave 0.2109 0.080 6
std 0.8872 0.072 6

IMADE ave 0.1549 0.0343

std 0. 8847 0.056 9

in Fig.2(a). Stanton'® proposed that the first-order
approximation had a bad performance over a small
range of values or when the sampling frequency
decreased. In order to illustrate that the local
polynomial techniques are not suitable for the higher-
order approximations, we use the second-order
approximation to estimate the squared volatility and

seth = 0.016 ,A, =1 x 107, In Fig.2(b) we

display the discrete points of second-order
approximation of squared volatility, many of which
are negative. The results are shown in Fig. 3 and
Table 3. It is seen in Fig. 3 that the fitting results of
the squared volatility have negative values at the right

boundary when we use the local polynomial method.

0.25 T T T T T 0.02 T T T T T
0.20 ’ .
001} e . .
0.15 Co ’ ' .
0 piatds Tk 2%
0.10 -7 :
005 1 1 1 1 1 7001 L 1 1 1 L
0 100 200 300 400 500 600 0 100 200 300 400 500 600
(a) A simulation data set from model(9) (b) The second-order approximations for squared volatility
Fig.2 Simulation data
20 %1073 .
: y y T T y T T Table 3 Comparison between the two
L5 - . .
=l volatility estimation methods
;‘—E 05} measure local polynomial B-spline
< of drift MADE 0.2893 0.2890
S o5l —— IMADE 0.0307 0.0301
g ——true data . _3
~10}  — -B-spline method volitity MADE( x107) 1.5000 1.500 0
15l local linear method IMADE( x10 %) 1.1333 0.998 4
' Z€ro

-2.0 L . . L L .
0.06 008 0.10 0.12 0.14 0.16 0.18 020 022
interest rate

Fig.3 Estimated squared volatility
This example shows that the restricted B-spline
method not only has a lower MADE and IMADE,
but also guarantees the nonnegativity of the volatility

which is shown in Fig. 3.

4 Application

4.1 Application of the B-spline techniques
to HS300 index

To understand the dynamics of the stock market
of China, we apply our proposed techniques to the
HS300 index data. The data consist of 2 610 daily
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observations from 8 April 2005 to 31 December
2015, and are presented in Fig. 4.

Because the data are the daily ones, the first-
order approximation is a good choice in the light of
the estimation effect and variance inflation. Following
the conventional practice in finance research, we
first take the logarithmic transformation of the price
index and then obtain the range interval 7=[6.7069,
8.678 8 ]. We set the number of equally spaced
interval knots J, = J, = 35. By using the rule
proposed in section 2, smoothing parameters A, =

0.1 and A, = 0.02 are chosen. The estimation results

2.0p

drift
=]
N\
/

65 7 75 8 g5 9
log(index)

6 000

5000F

4 000

3000

index

2000

1000

0 1 1 1 1 1 1 1 1 1 1
2005 2010 2015
year

Fig.4 Index of HS300 from 2005-04-08 to 2015-12-31

of drift and volatility are presented in Fig. 5. The
solid curves are the estimation, and the dashed

curves are the 95% bootstrap confidence intervals.

0.55

N\ \
0.15 N /
0.10
6.5 7 7.5 8 8.5 9

log(index)

Solid—estimator, dashed—95% bootstrap confidence bond.

Fig.5 Estimation of the coefficients of diffusion processes using B-spline

Regression bootstrap technique is used to

calculate the bootstrap confidence intervals (see Ref
[17] for details). We denote S, = X, — X, for the
original HS300 data {X

galo= 1 ---.n}, and then

b
generate the bootstrap responses {S, | using S: =

i

l;(X“)A + (;<le) JAg! , i =1, ,n -1, where

the bootstrap residuals {g” ,i = 1,---,n — 1} are

sampled randomly with replacement from | ,;,7 =1,

-+-.n = 1} and ;‘, = w It is easy to
- o(X) VA

obtain the bootstrap samples %(Xt,»}Yi*A);';ll} and

[(X,,Z3)iZ)} when the first-order approximation

is used. If a higher-order approximation is involved,

we just need to set X, = X, , and then generate a

Il b
regression bootstrap sample %X: d o= 1, nt.

Similarly, the bootstrap sample { (X, LYoo} and

{ (X,,Zy) "_1'| can be obtained. In our studies, the

bootstrap confidence intervals are calculated based
on 1 000 bootstrap samples.
4.2 Treasury bond case study

We apply the two techniques proposed above to
the three-year treasury bond from the secondary
market rates on the last trading day of each month
and compare the estimation effects of squared
volatility between the two methods. The data set
contains 753 monthly observations from 30 April 1953
to 31 December 2015, and is presented in Fig. 6.

Here we use the second-order approximation to
estimate the squared volatility of model (1) for the
monthly three-year treasury bond data. The
estimation of squared volatility with the 95%
bootstrap confidence bond based on 1 000 bootstrap
samples by the penalized B-spline with nonnegative
restriction techniques is displayed in Fig. 7 (the
solid curve ). In Fig. 7 the dashed-dotted curve
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0.18—r—r———r—r———+——— T
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

interest rate

0
1952 1960 1970 1980 1990 2000
year

2010 2017

Fig.6 Three-year treasury bond data set

denotes the estimation obtained by local polynomial
techniques. It is obvious that the squared volatility
estimated by local polynomial techniques with h =
0.028 9 is negative when the treasury bond rate is
equal to 0.16. This result shows that the fitting
effect of penalized B-spline with nonnegative
restriction techniques is better than that of the local
polynomial. Such effect will be very obvious when
the higher-order approximation is used. In this
study, we choose 7 = [0.003 0,0.164 5], J, =

35,and A, = 1 x107°.

20 10

—-—local linear method
— -95% bootstrap lower

15+ confidence bond 1
95% bootstrap upper
confidence bond

10 | —B-spline method ]

zZero

w
T

squared volatility

750 0.02 0.04 006 0.08 0.10 0.12 0.14 0.16 0.18
interest rate

Fig.7 Estimated squared volatility with 95% bootstrap

confidence bond

5 Conclusion

The B-spline method gives a good performance
for the drift and volatility estimation. When a higher-
order approximation is adopted, the B-spline method
is a better choice because it not only has lower MADE
and IMADE but also guarantees the nonnegativity of
the volatility, while the local polynomial method does
not. Our techniques will be extended to time-
inhomogeneous diffusion models in the future.

References

[ 1] Hansen L P, Scheinkman J A. Back to the future: generating

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

moment implications for continuous-time Markov processes
[J]. Econometrica, 1995, 63(4) :767-804.

Pedersen A R. Consistency and asymptotic normality of an
approximate maximum likelihood estimator for discretely
observed diffusion processes[ J]. Bernoulli, 1995, 1(3):
257-279.
Ait-Sahalia, Yacine. Maximum likelihood estimation of
discretely sampled diffusions; a closed-form approximation
approach[ J]. Econometrica, 2002, 70(1) :223-262.
Florens-Zmirou D. On estimating the diffusion coefficient from
discrete observations [ J ]. Journal of Applied Probability,
1993, 30(4) :790-804.

Jiang G J, Knight J L. A nonparametric approach to the
estimation of diffusion processes: with an application to a
short-term interest rate model [ J ].

1997, 13(5) :615-645.

Stanton R. A nonparametric model of term structure dynamics

Econometric  Theory,

and the market price of interest rate risk[ J]. The Journal of
Finance, 1997, 52(5) :1973-2 002.

Fan J, Zhang C. A reexamination of diffusion estimators with
applications to financial model validation[ J]. Journal of the
American Statistical Association, 2003, 98 (461 ) :118-134.
Ziegelmann F A. Nonparametric estimation of volatility
functions: the local exponential estimator[J]. Econometric
Theory, 2002, 18(4) :985-991.

Yu K, Jones M C. Likelihood-based local linear estimation of
the conditional variance function[ J]. Journal of the American
Statistical Association, 2004, 99 (465) ;139-144.

Xu K L. Reweighted functional estimation of diffusion models
[J]. Econometric Theory, 2010, 26(2) ; 541-563.

Yu Y, Yu K, Wang H, et al. Semiparametric estimation for a
class of time-inhomogeneous diffusion processes[ J|. Statistica
Sinica, 2009, 19(2) :843-867.

Ramsay J O, Silverman B W. Functional data analysis[ M ].
New York: Springer, 2005.

Ruppert D. Selecting the number of knots for penalized splines
[J]. Journal of computational and graphical statistics, 2002, 11
(4) . 735-757.

Yoshimoto F, Harada T, Yoshimoto Y. Data fitting with a
spline using a real-coded genetic algorithm[ J]. Computer-Aided
Design, 2003, 35(8) :751-760.

Fan J, Fan Y, Jiang J. Dynamic integration of time-and state-
domain methods for volatility estimation[ J]. Journal of the
American Statistical Association, 2007, 102 (478): 618-
631.

Kloeden P E. On effects of discretization on estimators of drift
parameters for diffusion processes [ J ]. Journal of Applied
Probability, 1996, 33(4) :606-610.

Franke J, Kreiss J P, Mammen E. Bootstrap of kernel
smoothing in nonlinear time series| C] //Bernoulli. Humboldt
University of Berlin, Interdisciplinary Research Project 373
Quantification and Simulation of Economic Processes, 1997

1-37.



