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Abstract In this paper, we established some new Hadamard-type inequalities for products of (h,
m) -convex functions, which are the extended Hadamard-type inequalities for ordinary convexity
sense, s-convexity in the second sense, m-convexity sense, and h-convexity sense.

Keywords Hadamard’s inequality; convex functions; (h, m)-convex functions; product of two
functions

CLC number:0178 Document code: A doi:10. 7523/j. issn. 2095-6134. 2018. 02. 001

XF(h, m)-1Y&E KRR Hadamard-B R~ X K 5 H

Fp L
(BRPHZE B E22Be , R BRFH 422000)
W E A L—-%XT(h, m)-D @ HFAR N H Hadamard-F £ 2 X, 5 2] 6y 245 K2 @ % O

VB2 AR OUT 50 b m- Y b b b SUT 89 Hadamard -7 F % & By 4 )
SR Hadamard F% 5%, @3 (h, m)-f9 @3 2 8 KEAR

In recent years, the concept of convex function Definition 1.1 Let h: JCR —R be a non-
has been extended by some scholars. For example, negative function. We say that f:[0,b]—R is an
Breckner''! introduced the concept of s-convexity, (h, m)-convex function with m e [0,1], if f is
and Varoganec'?’ defined h-convex functions. Some non-negative and for all x,y € [0,b] and a € (0,
results for Hadamard-type inequalities related to the 1), we have
extended convex functions have been obtained*”". Slax + m(l —a)y) < h(a)f(x) +
1 Background knowledge mh(l = e)f(y).

If the above inequality is reversed, f is said to
In 2011, Ozdemir et al. (8] presented the (h,

m ) -convex function as follows.

be (h, m)-concave function on [0,b].
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Remark 1.1

1) if we choose m = 1, we have h-convex
functions ;

2)if we choose m =1 and h( ) =, we obtain
non-negative ordinary convex functions ;

3)if we choose m =1 and h(a) =, we have
s-convex functions in the second sense;

4)if we choose h(a) =, we have m-convex
functions.

One of important applications of the concept of
convex function is the Hadamard’ s inequality as
follows.

Let f:ICR —R be a convex function and a, b
e [ with a < b, then the inequality

A < < e </ 210

(D

holds, which is well known as Hadamard’s
inequality.
In Ref. [ 9], Dragomir and Fitzpatrick

established the Hadamard’s type inequalities for s-
convex function as follows.

Theorem 1.1 Suppose that f; [0, © )—[0,
© ) is an s-convex function in the second sense,
where se (0, 1], andleta,be [0, ), a<b. If
felL'([a, b]), the inequalities

sl @+ b N b <f(a) + f(b)
it o <220

2
(2)

hold. The constant k = ; L is the best possible in

+1
the second inequality in (2).

In Ref. [ 3], Sarkaya proved the Hadamard’s
type inequalities for class of h-convex functions as
follows.

Theorem 1.2 Let f: I C R — R be an h-
convex function, a,bel, a<b and felL'[a,b].
Then

1 a+b
1 N 2

2h(7)

< [fa) +f0) ) [ A (3)
In Ref. [ 5], Dragomir and Toader proved the

)< [

inequality for m-convex function as follows.

Theorem 1.3 Let f: [0, © ) — R be an m-
convex function with me (0,1]. f0<<a <b < »
and feL'[a,b], one has the inequality

1 b
b_af“f(x)dts

min[f(a) +mf(L) f(b) +mf(:l>}_ "
2 ’ 2
Some inequalities of Hadamard-type related to
this new class of (h, m)-convex functions are
givenm.
Theorem 1.4 Let f: [0, ) —R be an (h,
m ) -convex function with m e (0,1] andte[0,1].

IfO0<a<b<o and fel'[a,b], the inequality

b%aj:ﬂx)dts
min{f(a)Llh(t)dt ; mf<%)£h(1 ~t)dt,

) [ A de +mf ) [h(1 = Dde] ()

holds.
In Ref.

Hadamard’ s type inequalities for products of convex

[ 10 ], Pachpatte established some

functions as follows.
Theorem 1.5 Let f, g : [a,b] —[0,o ) be

convex functions on [a, b] e R, a<b, then
1 1 1
TS de < SM(a,b) + N (a,b),

(6)
and

I (Eh) <

S [ A g dx v SM(ab) + N (aLb)

(7)
where M (a,b) =f(a)g(a) +f(b)g(b),
N(a,b) =f(a)g(b) +f(b)g(a).

In Ref.

inequalities for products of s-convex functions in the

[ 11 ], some Hadamard’s type
second sense are constructed by Kirmaci et al. as
follows.

Theorem 1.6 Let f,g:[a,b]—R, a,be [0,
® ),a <b, be functions such that f and fg are in
L'([a,b]). If fis convex and nonnegative on
[a,b] and if g is s-convex on [ a,b] for some fixed

se (0,1), then
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s de <
DG ®
where M (a,b) =f(a)g(a) +f(b)g(b),
N(a,b) =f(a)g(b) +f(b)g(a).

Theorem 1.7 Let f,g:[a,b]—R, a,be [0,
®),a < b, be functions such that f and fz in

1
- 2M(a,b) +

L'([a,b]). If fis s,-convex and g is s,-convex
connegative on [ a,b] for some fixed s, ,s, € (0,1),

then

A g0 e <
L M(a,b) + B(s, +1,s, + 1)N(a,b) =

sp+s, +1
[M(a,b) +s,s, FF(SI)F<SZ)

1
(s, +s, +1)

s+, +1 Na,b) ],

(9)

R g, DT (y)
where B(x,y) = Lt (1 —¢)"7'dt = 7F(x i)

Theorem 1.8 Let f,g:[a,b]—R,a,be [0,
® ), a <b, be functions such that f and fg are in
L'([a, b]). If fis convex and nonnegative on [ a,

b] and if g is s-convex on [ a, b] for some fixed s e

(0,1), then

2 () [ e de <

1 1
mM(a,b) + mN(a,b)

(10)

The main purpose of this work is to establish
some new Hadamard-type inequalities, similar to the
above inequalities, for products of convex functions
and ( h,

generalizations of the above inequalities.

m )-convex functions, which are

2 Main results and applications

Theorem 2.1 Let £:[0,1]—(0,o ), f, g:
[0, )—R , be functions such that h e L' ([0,
1), fgel' ([a,b]) witha,be[0,%), a<b.
If £ is convex and nonnegative on [0, ), and if g
is (h,m)-convex and nonnegative on [0, o ) with
me (0,1] and t € [0,1], then the following
inequality holds,

[ Hwetods

< min{[f(a) = f(b) JP(t,h(1) ,h(1 =1)) +
SCOYP(1,h (1) ,h(1 = 1)),
LA(b) = fCa) JQCt,h(2) ,h(1 1)) +
SCa)Q(1,h (1) ,h(1 =1)) 1, (11)

where

(k1) (1 = 1))

= g(a) [ th(de + mg(2) [h(1 - 1y,
P(1LR(1) (T = 1))

= g(a) [ R dt + mg(2) [ h(1 - Dy,
Q(t,h(1) ,h(1 =1))

= g(b) [ th(0)dt + mg(-) [[th(1 = ),
Q(1,h(t) ,h(1 =1))

= &(b) [ B(0de + me(S) [R(1 =1y

Proof Since f is convex and nonnegative on
[0, ), we have

flta + (1 -=1)b) < ¢f(a) + (1 —1)f(b)
and

Sb + (1 —t)a) < tf(b) + (1 —1)f(a).
From g is (h, m)-convex and nonnegative on [0,
o ), that is
gltx +m(1 = t)y) < h(t)g(x) +mh(l -1)g(y),
for all x,y € [0, ). It follows that, for all te [0,

1] b
glia + (1= 0b) < h(Dga) +mh(1 - Dg(L),
and
g(th + (1 —=t)a) < h(t)g(b) +mh(1 —t)g(%).

By the nonnegativeness of f and g, we obtain
flta + (1 —=)b)g(ta + (1 —=1)b)
< [f(a) + (1 =0)f(b) J[h(1)g(a) +

mh(1 = Dg(2)]
= [f(a) = f(5) 1 [g(a)ih(r) +

mg(%)th(l 0]+

SO Lg(@)h(t) +mg(S (1 =],

and
flth + (1 =t)b)g(th + (1 =t)a)
< [f(b) + (1 =1)f(a) J[h(t)g(b) +
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mh(1 - 1)g(+)]
= [A(b) ~f(a)1[g(b)ih(1) +

mg(%)th(l -t)] +

fa)[g(b)h(t) +mg(-)h(1 1) ].

Integrating the above two inequalities on [0, 1],

with respect to ¢, we obtain

Llf(m + (1 =0)b)glta + (1 —1)b)de
< [f(a) ~f(5) 1L g(a) [ th(o)d +
mg(%)gth(l —-t)dt] +

) Lga) [ () + mg(2) [h(1 = yan ],
and

Llf(tb + (1 =a)g(th + (1 —1)a)de
< [A(b) ~f@) I [(h) [ th(t)dr +
mg(%)fthu “oyde] +

Ay Le) [ (D) + mg(2) (1 ~an ]
It is easy to see

L'f(m +(1=0)b)glta + (1 —1)b)de

Llf(tb + (1 =ta)g(th + (1 —t)a)dt

ﬁfﬂx)g(x)dx.

Using the above inequalities and equality, we obtain
the required result.

Remark 2. 1 If we choose f(x) =1 in (11) for
all xe [a,b], we obtain the inequality (5).

Remark 2. 2 If we choose f(x) =1 and h(1)
=tin (11) forx e [a,b], we obtain the inequality
(4).

Remark 2. 3 If we choose f(x) =1,m =1 and
h(t) =t in (11), we obtain the right hand side of
the Hadamard’s inequality (1). If we choose f(x)
=1,m=1and h(t) =¢ in (11), we obtain the
right hand side of the inequality (2).

Theorem 2.2 let h,, h,:[0,1]—(0,% )7,
g:[0,0 )R ,be functions such that hh, e L'

([0,1]), fgelL'([a, b]) witha,be[0,%),a
<b. If fis (h,, m,)-convex and nonnegative on
[0, © ), and if g is ( h,, m, )-convex and
nonnegative on [0, ) with m, ,m, € (0,1] and ¢

€[0,1], then the following inequality holds
gt ds
< min | f(a) P(hy (1) by (£) hy (1 = 1)) +
m1f<mil>P<h1<1 —0) k(1) by (1= 1)),
FBYQCh, (8) hy (1) (1 = 1)) +
m1f<mil>o<hl<1 = 1) hy (1) Ay (1 =)},

(12)
where

P(Ch,(t) ,hy(1) ,hy (1 1))
= g(a) [ (0, (1)t +

mag -2 [ (k1 = Dy,
Py (1 =) s () s (1= 1))

= g(a)J:hl(l — ) hy (1) de +

mag ) [ (1= k(1 =D,
OCh, (1) 1y (1) o (1 = 1))
= ¢ (8) [ Iy (Dhy ()i +

mog ) [ b (0 hy (1 = 1y,

Q(h](l _t),hz(t),h2<1 - t))
= e (b) [ 1 (1 =Dy (1

1
m2g<miz>fohl(1 — ) hy (1 - t)de.
Proof Since f is ( h,, m, )-convex and
nonnegative on [0, ), that is
ot m (1= 0)y) < b (Df(x) +
mh (1 =1)f(y)
for all x,y e [0, ), we have
. b
fGa + (1 =0)b) < h(0)f(a) +mh, (1 -0)f(=),
1
and

b+ (1 =1)a) < by (Df(b) +mhy (1= 0)fC5).

From g is (h,,m,)-convex and nonnegative on [0,
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), that is

g(tx +my(1 =1)y) < hy(1)g(x) +mhy (1 -1)g(y),
for all x,y € [0, ). It follows that, for all te [0,

1],

g(ta + (1 =0)b) < hy(1)g(a) +myhy (1 '”g(%>

and
g(th + (1 =1)a) < hy(1)g(b) +myhy(1 —t)g(i)

By the nonnegativeness of f/ and g, we obtain

flia + (1 —1)b)g(ta + (1 —1)b)
< Dby (Df(a) + miby (1= DfC2)] x

ha(Dg(a) +mahs (1 = 0)g() ]
S (R (k) +
mag by (0hy(1=0)] +

m,f( = )[g(a)h (1 =0)hy (1) +

ng( )h (1 -0)h,(1 =0) ],
and

Jb + (1 -t)a)g(th + (1 —t)a)
< [h (Df(B) +mhy (1= Df ()] x
[ha(0)g(b) +mahy(1 = 1)g(-5) ]
= f(b) [g(b)hy (1) hy (1) +
mag () (O (1= 0] +

mlf(;)[g(b>h1<1 - 1)h, (1) +

myg (- )h(l hy (1 =1)].

Integrating the above two inequalities on [0, 1],

with respect to ¢, we obtain

[[fa+ (1 = )b)gtua + (1 Dby
< f() La(a) [ h (D hy (0] +
e G2 [ Ol (1 = i +

w2 L) [ 1 (1= Dy (i) +

mog(2) [0, (1 = iy (1 = i),

and

[+ (U= Dargtib + (1 = )a)ds
< b Le(a) [ b (Db (] +
m2g< jh ()h, (1 —1)de +

mﬂf)[g(b)jhl(l - Oy (1) dt] +

mg( jh (1 = 0)hy (1 —1)de],
It is easy to see that

Llf(ta + (1 =)b)g(ta + (1 —t)b)de
= L]f(tb + (1 -0)a)g(th + (1 —t)a)dt
- [Aa s

Using the above three inequalities and equality, we
obtain the required result.

Remark 2. 4 If we choose h, (1) =t,m, =1 in
(12), we can obtain the inequality (11).

Corollary 2.1 Let h:[0,1] —(0,0 ), f, g :
[0, » )—R ,be functions such that h e L' ([0,
11), fgel'([a, b]) witha,be[0, =), a<b.
If fand g is (h, m)-convex and nonnegative on [0,
o) with me (0,1] and ¢t € [0, 1], then the
following inequality holds,

e

< minlf(a) P(h(1) (1) h(1 =) +
mf(LYPCR(L =) h(1) h(1 1)),
SR (1) h(1 = 1)) +
mf(-)Q(h(1 = 1) h(1) ,h(1 =)}, (13)

where

PCR(1) h(1) h(1 = 1))
= g(a) [ (0t + mg(2) [R(R(T =D,
PCR(L =) k(1) (T = 1))
= &) [ A1 = OB+ mgCE) [h(1 - 07,
QUh(1) h(1) (1 = 1))
= £(5) [ W (0t + me(S) [ R(AL = 1),
QUh(1 = 1) h(1) (T = 1))
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- g(b)L]h(l ~Oh(1)de +mg(%)j0]h2(l —1)de.

Proof From Theorem 2.2 let h; =h, =h and
m; =m, =m, so Corollary 2. 1 immediately holds.

Theorem 2.3 let h:[0,1]—(0,o ), f, g:
[0, ) —R, be functions such that h e L' ([0,
1), fgel' ([a,b]) witha,be[0,%), a<b.
If f is convex and nonnegative on [0, ), and g is
(h,m)-convex and nonnegative on [0, o ) with m
€(0,1] and ¢t € [0, 1], then the following
inequality holds,

2 De( 30 - [ o
h(=)

< [mg(L)f(a) +me(L)f(h) +

flarg(a) ][ h(o)dr +
[m’g(=)f(a) +m’g(—=5)f(b) +
me(Lf(@) 1 [ = e+ [AD) ~fa)] x
[ Latah() +me(Lym -nla (1a)

Proof We can write

a+b _ta+(1—t)b+(1—t)a+tb
2 2 2 )

Since fis convex and nonnegative on [0, ), and g

is (h,m)-convex and nonnegative on [0, % ), so

we have

A rh

:f(ta+(é—t)b+(1—t2)a+tb) o

g(m + (; -t)b . (1 —tga +tb>
h(5)

$Tz[f(ta+(1 “00b) +f((1 =)a+bh)] x

th

g + (1= 0b) +mg(U=00 4 )]

h(5)
< T{f(ta + (1 =t)b)g(ta + (1 —1)b) +

mlif(a) + (1= 0f(5) Jg(LL o0 0 4

[(1 =0)f(a) +1f(b) I[h(t)g(a) +mh(1 —t)g(%)] +

(1= Df(a) +if(5) Jg(LL =04, 1))

m

h(y)
$T%f(ta + (1 =t)b)g(ta + (1 —1)b) +

mlfla) +f(h) ] x
(gL +mh(1 - 0g(-%)] +

fa) [g(a)h(n) +mg(LIh(1 = 0) ] +

LAY ~f(a) ) La(@)th(1) +me( 2y th(1 ~0)] ]

h(3)
2
[mg(Lo)f(a) +mf(E)f(b) +fa)g(a) Th(2) +

{flta + (1 —t)b)g(ta + (1 —=t)b) +

[mle(-5)f(a) + mg(“5)f(b)] +

m m

mg (L)) Th(1 = 1) +

Lf(b) = fla) ][ g(a)th(t) +mg(%)th(1 - )14

Integrating both side of the above inequality on [0,
1], with respect to ¢, and by the fact that

Ef(m + (1 -0)b)g(ta + (1 —1)b)dt

1
b-a

Forer:

we obtain

a+b a+b

FETD (U3

1
h<7) b
< [ g0 du +
(e (L) +meCLf(h) +f@e(@)] [ A+
£m2g<§>f<a> + ng%)f(m +
meC () [ A1 -0 dr

A(6) ~f@)][ La@yh(t) +me(Eyh(1 ~ ]

which completes the proof.

Corollary 2.2 Let f,g:[0,% )—[0,% ), be
convex functions such that fg e L' ([a,b]) with a,b
€[0,®),a <b, then the following inequality
holds,
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a+b a+b

)&(

4/ )

< blfaff(x)g(x)dx + ?M(a,b) + %N(a,b)

(15)
where M(a,b) =f(a)g(a) +f(b)g(b),N(a,b)
=f(a)g(b) +f(b)g(a).

Proof From Theorem 2.3 let h(t) =t,m =1,
so Corollary 2. 2 immediately holds.

Theorem 2.4 Let h, ,h,:[0,1]—(0,% ), f,
g:[0, o ) —R, be functions such that hh,
LCL00T) . fge £ (Cmin |- ) max |2

1 My m,
mi% 1) witha,be[0,%), a<band m,,m, € (0,
2

1]. i fis (h,,m,)-convex and nonnegative on [0,

© ), and if g is (h,,m,)-convex and nonnegative

on [0, o) withte (0,1],
inequality holds,

1 sa+b
1 N 2
NESINES

then the following

a+b
2

)&( )

< ijf(x)g(x)dx +

(l‘t)“ )(“ Dy 1

m, 2

moms [ (U=
mINl(a,b)Lh,(t)hz(t)dt ¥
mlmzNz(a,b)JOlhl(l DRy (1 = )de +
m1M1<a,b)Llhl<1 — Oy (1) de +

szz(a,b)J:hl(z)hz(l — 1) dt, (16)
when

ViCab) = mf( ) e(a) + mf(a)a(,),
NaCab) = mof () +mf (e ),

anﬁ>=mﬂiaaa>+mﬂﬁ»aﬁ»,

M,(a,b) = mzf(a)g( ) +m1f( )g(*)
Proof We can write
a+b ta+ (1 —t)b+(1 —t)a + b

2 2 2 )

Since fis (h,,m, )-convex and nonnegative on [0,

o), and g is (h,,m,)-convex and nonnegative on
[0, ), so we have

a+b a+b

AT (2D
=f<ta+(;—t)b+(1 =a+ib
g<m+<; -0b, (1 —t§a+tb>
< b (e () [l + (1= 00) +
(L0 10y
[eta+ (1= 0)b) + mg( L0410

< hy (<

DIha(3) flta + (1 =0)b)g(ia + (1 =0)b) +

momyf(U= 000 2y (Lot 10y

1 1 2 2

mal Chy (DfCa) +mihy (1= 0fC)) ] x

gHoDa gy, pdoDe 1)

2 2 1 1

[ha(Dg(a) +mha(1 = Dg(-) ]|

() ftia + (1 =Db)glia + (1 =0b) +

2
myptmDe 1y (d=ba iby

1 1 2 m,

< Iy

mal Chy (DfCa) +mihy (1= 0fC)) ] x

(D) + mahs (1= 0g(5)] +

m,

my Ly (D) 4 midy (1= (%) ]

ha(Dg(a) +mby(1 = 0g(-) ]|

() ftia + (1 =0b)glia + (1 =0b) +

m((l—t)a ﬁ)g((l—t)a_’_ﬁ)_’_

m, m, m,

)]h () hy (1) +

= hy(

[mhf(*)g(a) +myf(a)g(c -
[maf(a)g( 2) +mymf( )g(*)]h (Dhy (1 —1) +
[mlmﬂ )g(*) + myf( 2)g(aﬂh (1 -0)hy (1) +

[mlmif(m*)g(gﬂ +
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mima ) ) T (1= Dl (1 = 1)

Integrating both side of the above inequality on [0,

1], with respect to ¢, and by the fact that

Llf(m + (1 =0)b)g(ta + (1 —1)b)de

we obtain

505

=35

et +

08 B0 B

m, m,

[mf{ 2)eta) + maftare 2] [ oms e

el )il )e( )]

=00 2 2]

mf{ )g<a>

which completes the proof.

Remark 2. 5
=t,h,(t) =¢"in (16) for some s e (0,1),
obtain the inequaltiy (10).

Remark 2.6 If we choose m;, =m, =1 and
hi(t) =h,(t) =t in (16),
inequality (7).

Corollary 2.3 let f: [0, ) —>R, be an
(h,m)-convex and nonnegative on [0, o ) with
me(0,1] andte[0,1]. fhel' ([0,1]),fe
L'([a,b]) with a,be [0, ),
following inequality holds,

-

W) 2
= [ e+ mff( )]+ [fa) +mf{ L] x
Llh(t)dt + m[f( b )+ m ( )” h(1 = t)de.

(17)
Proof We choose g(x) =1 for all x € [ a,
bl, and h,(t) =t,m, =1 in (16),

obtain the following inequality

jh (1 = 0)h, (1) de,

If we choose m; =m, =1,h, (1)

then we

we can obtain the

a < b, then the

then we can

2 a+b
()
< ﬁff(x)dx + mljlf(w + t—bl)dt +

[7@) +my( - )”h(l—t)dt+

ml[f(mi])+ mlf(mi?)]th(l ~ e

By the fact that
I 3 b
PO = )

we can obtain the result.
Remark 2.7
h(t) =1,

inequality for s-convex functions,

27((;;1)) ff(x)dx L Ma ) +f(b>

which is the Remark 4 in Ref. [11].

Theorem 2.5 Let h,,h,:[0,1]—(0,% ),
f,g:[0,0 ) —R, be functions such that hh, e
L'([0,1]), feeL'([a,b]) with a,be [0, ),
a<b. If fis (h,,m,)-convex and nonnegative on
0, ),
nonnegative on [0, ) with m, ,m, € (0,1] and

tel0,1],

If in Corollary 2.3 we choose

m =1, we can obtain the following

and if g is (h,, m, )-convex and

then the following inequality holds,
g0

< f(a)PChy () ,hy (1) Jhy (1 = 1)) +

() PO =000, (1 =),

(18)

where

PChy () 1y (1) hy (1 = 1))

= g(a) [ by ()1, <t>dx+m2g( ) [ (ks (1 -0,
1) by (1) by (1 = 1))

= g(a) [ (1= )by (1) +

P(h, (1

ng(mi)ﬂhm — Ok (1 =) de.

Proof From the proof of Theorem 2.2, we are
easy to obtain the inequality (18).

Remark 2.8 If we choose m; =m, =1, h,
(t) =t and h,(t) =¢ in (18), we can obtain the
inequality (8).



%24

SUN Wenbing ; Hadamard-type inequalities for products of (&, m)-convex functions and their applications

153

Remark 2.9 If we choose m; =m, =1,h, (1)
=¢" and h, (1) =12
inequality (9).

Remark 2.10 If we choose m; =m, =1,
h,(t) =t and h,(t) =t in (18), we can obtain the
inequality (6).

Remark 2. 11 From Remark 1.1,
choose proper values of m; and h;(t) (i=1,2) in

inequalities (12),(16) and (18), we can botain

in (18), we can obtain the

if we

the corresponding inequalities under the condition of
different convexity. For example,

1)1If we choose h, (t) = h,(t) =tin (16) and
(18), we can obtain the following Hadamard-type
inequalities for products of m-convex function,

ErrEy

< %ij(x)g(x)dx +

e L e L
%[Nl(a,b) + mym,N,(a,b) ] +
clmM,(a.b) + mMy(a,b)], (19)
and

e
S @@ + mmf L) L]+ gvi ),

m m,
(20)
Where Nl(a9b>’ Nz(a,b), M2<asb)

are as in Theorem 2. 4.

Ml(aob) ’

2) If we choose m; = m,h,(t) = t;m, =1,
hy(¢) = ¢ in (16) and (18), we can obtain the
Hadamard-type inequalities for products of m-convex

function and s-convex function as follows,
2s+1f(a+b) (a+b)
2 18\

< %ff(x)g(x)dx +

mjf( ‘>“+&)g((1-t)a+tb>dt+
1

+2
mM|(a,b)B(s +1,2) + M}(a,b)B(2,s +1),
(21)

[N (a,b) + mNy(a,b)] +

and

st
1

= mN’l(a,b) +f(la)g(b)B(2,s +1) +

where B(x,y)

[10]

(1]

m(%)g(a)B(s+l,2), (22)

= J:,;x‘l(l —

Ni(a,b) = mf{L)eCa) +/(a)e(b),
b

£)""'d¢, and

NiCab) = f(L)eCa) + m %)e(h),
MiCasb) = mf{2)eCa) +/(L)eb),

Wi(a,b) = fla)g(a) +mf(L)g(h).
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