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Abstract  Recently, researchers proposed many accelerated project gradient methods based on new
step length choice rules for large scale optimization problems. In this paper, we propose two project
gradient methods with variants of new selection rules for quadratic programming with linear equality
constraints. One is a non-monotone project gradient method for which an adaptive line search method
is adopted and the Barzilai-Borwein step size is applied, and the other is a monotoneproject gradient
method with Yuan step size. We give the global convergence of these two methods under mild

assumptions. Numerical experiments indicate that both the new methods are more efficient than

traditional project gradient methods.
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In this paper, we consider the quadratic mlnf(x) x TOx +c'x,
programming problem
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where @ € R"" is symmetric and positive definite,
x,c € R", and the feasible region () is defined by
QO ={x e R",Ax = b}, (2)

whereA € R"™", rank (A) = m, andm < n.

First of all, we give a brief review for the
development of the efficient step length selections in
gradient methods for minimizing a large scale strictly
convex quadratic function f(x). Assume that g(x)
=Vf(x) can be obtained at everyx and g, = g(x,)
is the gradient at x,. The classical examples of step
size selections are the line searches used in the
steepest descent ( SD) and the minimal gradient
(MG) methods, which minimize f(x, - ag,) and
lg(x, — ag,) |, respectively,

SD
ay

argminf(x, - ag,)
T
8.8
g:ng '
Me

oy = arginin Hg(xk - ag,) Hz

(3)

.
8.98

= = =0 (4)
8908,

Though the SD gradient method converges

linearly, the convergence rate may be very slow,
especially when Q is ill-conditioned in the sense that
the condition number cond ( Q) is very large. The
cond (Q) is defined as follows:
A.(2)
cond(Q) = 1 (0)
where A, (Q) and A, (Q) represent the largest and

smallest eigenvalues of Q, respectively.
In 1988, a significant step size selection is

proposed by Barzilai and Borwein (see Ref. [1]),

T
5,.,S
BB1 k-1"k-1
ay = T ’ (5>
sk,lyk,l
S,y
BB2 k-1 k-1
oo D (6)
Vi1
wheres, |, =x, -x, ;andy, , =g, -8, ,. We refer

to the step size (5) or (6) as BB ( Barzilai and
Borwein) step size. From (3) and (4), we can
easily obtained the fact that in the unconstrained
case, afm = a}?l_), and afBz = ail_(;, (see Ref. [2]).
In other words, the step lengths (5) and (6) use
the SD and MG step lengths with one delay,

respectively. A feature of BB step size is that the

sequences {f(x,) | and {|/g,|,! are non-monotone,
in contrast to the SD and MG methods. Global
convergence of the BB method was established by
Raydan"' in the strictly convex quadratic case with
either (5) or (6). Dai and Liao'*' have shown that
the BB method is R-linearly convergent in the n -
dimensional case. Moreover, numerical results
indicate that the BB method outperforms the method
with (3) or (4) for convex quadratic functions ( see
also Ref. [2]). Starting from (5) and (6), BB-
like methods with

longer delays have been

studied””'. In Ref. [5], Dai and Fletcher proposed
a formula
PP
‘ oy Sk-iS i
@ =, (7)

> S

where M is a positive integer, and they suggest that
M = 2 is a better choice for box-constrained
quadratic programming.

Recently, some monotone methods which are
competitive to the BB-like method are proposed.
One of these methods with step length

2

Y
a, = — : T (8)
el +1a) +1a)”

where

o, = «/(la:ljl -la)”)” + 4 g, 5 lls, |

A property of

2
5o
was proposed by Yuan in Ref. [ 8].
(8) is that if a} has been taken after .}, only one
more step «, is needed to get the solution to the
minimizer of the two-dimensional strictly convex

quadratics. If x, is obtained by (3), thens, , =

- a)”,g,.,- Thus a variant of (8) was proposed in
Ref. [9] as follows:
vy 2
o, = — : — 9
Y 1), +1a) (9)
where
. ! ! 4 :
o - /(m;l}, IS T
(a1 g I12)

Based on (9), Dai and Yuan'”’ proposed a
gradient method whose step length is given by
o,” if mod(k,4) =1 or2,

@, = (10)

vy .
a,  otherwise.

It is not difficult to verify the monotonicity of the
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method because ;' < 2a;".

The efficiency of the project gradient methods
with the above step length selections has been
verified by a large amount of numerical experiments

10131 4

on box-constrained quadratic programming'

Support Vector Machines ( SVMs ) "%/

by the success of these new step selection rules, we

Inspired

improve project gradient methods for (1).

1 PBB method analysis

In this section, we focus our attention on
designing efficient project gradient type methods for
solving (1). Here we let P denote the projection

operator on () ;

P(x) = arygerrsllin ||x _y”2 (11)
=x-T(Ax -b), (12)

where T = A"(AA") ", Let d(x) be defined in
terms of the gradient g(x) as follows:
d(x) =P(x -g(x)) -x
= - Hg(x), (13)
where H = I - A"(AA") 'A.

Given an iterate point x,, the project gradient
method for (1) computes the next point in the
following form;

X, =X, +ad, (14)
where d, = d(x,) and @, > 0 is a step length. It is
easy to know that s,_, = o, d,, and y,_, =

a, ;0d, ., so we obtain another form of (7)

M
2 g7

Z L.:Iak—idk—[dk—i

I M

Z o ai—id:—iQdk—i

We refer to the project gradient method with BB-like

(15)

step length (15) as the projected BB method or PBB
method. Obviously, the formula (5) is as a special
case of (15) with M = 1.

Compared with original project gradient method
(PSD) , the PBB method is much more effective. In
PSD, there is a, = «;,” , where

oz‘:n' = minf(x, + ad,)
o

- gv/fdk (16)
d'0d,

In order to illustrate the performance of the PBB

method for (1), we have generated 10 random test

problems with n = 1000,m = 200 and M = 2. A,c

and the initial point x,, is generated randomly, b =
Ax,. Also Q is randomly generated with a range of
condition numbers from 10° to 10*. The terminal
condition is ||d, |, < 10~*. The numerical results of

the PBB method are presented in Table 1.

Algorithm 1 MPBB method

Step 1: Let x, be a feasible point of (1), /5 = o« ,fy = f(xy) ,k

0,0 =0,L,MeN, H=1-A"(AA")"'A,a) =1,k =
Ky =0,i=h =0.
Step 2: d, = - Hg, and terminate if ||d, ||, = 0.
Step 3: I/(x, + a}'d,) = f;
X, =x, +a’d,
else
X, =x, +a)d,
end.
Step 4. If f(x,,,) < flxy)
K, =k+1,k, =k+1,i=i+1,1=0
else
l=1+1
ifl =L
b= b Lfy = max (e )| Ky = b+ L= 0
end
end.

Step 5. % =k + 1, goto Step2.

Table 1 Numerical results of PSD and PBB methods
Problem PBB PSD
cond( Q) iter sec iter sec
10e +3 126 0. 86 1145 5.57
10e +2 47 0.39 213 1.30
10e +3 94 0. 69 977 4. 64
10e +4 334 1.97 5333 23.37
10e +3 115 0. 81 1019 4.61
10e +3 154 0.94 1151 5.23
10e +4 351 1. 66 4673 20. 40
10e +2 49 0.52 207 1.02
10e +2 56 0.47 219 1. 06
10e +4 302 1.55 4411 19.05
average 162.8 0.98 1934.8 8. 67

In Table 1, cond( Q) is the condition number
of @, iter and sec denote the iteration numbers and
the time required respectively.

From Table 1, we can see that the PBB method

is much more effective in solving the 10 test

problems compared with the PSD method. PBB
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method with an average of 162.8 iterations and
0.98 s have an obvious advantage than PSD with an
average of 1 934. 8 and 8. 67 s.

2 Two efficient project gradient
methods

Though the PBB method performs very well in
solving (1), there is no theory to guarantee its
global convergence in constrained case''’. To
ensure global convergence of this method, we modify
this method by incorporating some sort of line
search. It is important that the line search does not
degrade the performance of the unmodified PBB
method.

Firstly, the sequence {f(x,) | generated by the
PBB method is non-monotone, so a non-monotone
line search is necessary. Secondly, we take a, as
the step length at each iteration as much as possible.
Based on these two considerations, the GLL
( Grippo-Lampariello-Lucidi ) ") hon-monotone line
search is a good choice. We refer to the modified
PBB method with the GLL non-monotone line search
as MPBB method (see Algorithm 1).

f(x,,) is the smallest objective function value

over the past k; iterations,that is,

£(x,) = minf(x).

0<j<k
Obviously {f(x,,) | is a strictly monotone decreasing
sequence. If no smaller function value is found in
L + 1 iterations, the reference function value /7, will
be updated by the maximum function value in most

recent L + 1 iterations.

Algorithm 2 Monotone algorithm

Step 1: Let x, be a feasible point of (1), & = 0,H = I -
AT (AAT) 'A.

Step 2: d, = - Hg, and terminate if ||d, ||, = 0.

Step 3. x,,, =x, + a,d,, wherea, = p,a}” ,p, € [0,2].

Step 4.k =k + 1 ; goto Step2.

Step 5.k =k + 1, goto Step2.

Next, we will introduce a kind of monotone
project gradient method with a new step length
similar to (10). Now we give a general form of the

monotone project gradient method for (1) ( see

Algorithm 2).
The following step length similar to a} "
vy 2

a, = — : : (17)
T P

where
rAE
ol =/<1a:?,—1a:”>2+ I
(a1 &y 1)

is given by replacing ;" with ;" in (9). Following

the formula (10), the step length

o [« ifmod(k,4) = lor2

o =[ . . (18)

a,  otherwise

is given. We refer to the project gradient method
with (18 ) as the PSY method. Obviously, the
methods PSD and PSY are special cases of the
Algorithm 2.

Here we need to point out that ;' may not have
the similar property of (8) and (9) in two-
dimensions for (1), but the numerical results will
show that the PSY method is comparable to the PBB
method.

3 Global convergence analysis

In this global

convergence of Algorithm 1 and Algorithm 2. In

section, we analyze the

what follows, we denote the set of solutions to (1)
by

X" ={x" € Ql f(x) =f(x7),forall x € Q},
and the optimal value of (1) by f~.

Theorem 3.1 If Algorithm 1 does not
terminate in a finite number of iterations, there must
exist a strictly monotone decreasing infinite
subsequence in {f(x,)}.

Proof Letp be the length of the {f(x,)}. If
p =+ ®, {f(xkl\)} is the subsequence satisfying
the requirement.

If p <+ o is finite, there exists a const h,

which satisfies k, = k,.

Without loss of generality,
let b, = 0. Since no smaller function value is found
after iteration k , the reference function f will be
updated every L + 1 iterations and the length of { £} |
is infinite. It is easy to see that

Sigeg =14 = Ongllfdé%f(ka) fog =1,2,--(19)
On the other hand,
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f;>f(x,:(,l+l+j),j =1,2,-,L. (20) which meansd(x™) = 0.
It follows from k., =k + L, (19) and (20) that Finally, we consider P4. In P1, y is replaced
: ith x — dxi laced with x ™, th
fi= orz‘i)i%f(x’ffm*f) | (21) :111 x g(ix) an f.xl:lls replaced with x ™, then we
., ave inequality as follows,
=S (22)

Letq = g +1in (20), thenf , >f(xk(,l+2+j) J=1,
2,:-+,L. Combining (22), we conclude that

fy> f(x, )0 = 1,2, L (23)
Letj = Lin (20) ,then
Fi> [ )
= f(x,) (24)
It follows from (23) and (24) that
fi> Orgjfdgl%f(xk,,m,) b=/

which implies that either even or odd subsequence of
[/} is strictly monotone decreasing. In conclusion,
the theorem is true. [
We give some properties of P(x) and d(x)
which will be used in the following theorems, where
P(x) and d(x) are defined as (11) and (13)
respectively.
Proposition 3.1 ( Properties of P(x) and
d(x))
Pl. Vye R'andx e Q,(P(y) -y)"(x -P(y))
= 0.
P2. Vx e Q,g(x)"'d(x) <-d(x)"d(x).
P3. Vx™ e Q,d(x”) = 0 if and only if
g(x™) " (x =x™) =0forallx e Q.
P4, Vx e R'andx™ e X" = {y e Q1 d(y)

0!, we have

*

+ A,
, < ol

Proof Firstly, Pl is the optimal condition of
(11) (see Ref. [117]).
From P1, we can easily obtain P2 by replacing

<

lx —x°

y withx — g(x) in PI.

P3 is proved as follows.

From the definition of d(x), we know that if
d(x™) =0, x7 = P(x” - g(x™)). Ifyis
replaced by x ™ — g(x™) in P1, P1 yields

g(xH)"(x=x") =0Vx e Q. (25
Conversely, due to P(x™ - g(x™)) e Q, we have
g(x™"d(x™) = 0.

From above inequality and P2, we obtain

0<s-d(x)"d(x") <0

(P(x -g(x)) —x+g(x))'
(x7-P(x -g(x))) =0. (26)
In fact, by the definition of d(x) as (13), we know
that (26) is equivalent to
(d(x) +g(x))"(x" -x —d(x)) +
g(x) (x" —x) = g(x) (x" - x),

(27)
Rearranging (27), we have
g(x™)(x7 -x) - g(x)'d(x)
=d(x)"(x -x™) + d(x)|, +
(g(x™) —g(x)) " (x™ -x)
=d(x) (x —x") + [[d(x) ], +
(x7-x)'Q(x" - x)
=d(x)(x —x") + A, |x - x| (28)

On the other hand,
g(xM)'(x7 -x) - g(x)'d(x)
=g(x™) (x"-x) + (g(x7) ~g(x))"d(x) -
g(x™)'d(x)
g(x™) (" -x-d(x)) +(x" -x)'Qd(x)
g(x™) (" - P(x -g(x))) +
(x" -x)'Qd(x). (29)
Since P(x —g(x)) € Q and from P3, then we have
g(x)(x7 -x) —g(x)'d(x)
< (x™-x)'0Qd(x). (30)
Combining (28) and (30), we obtain that
d(x) (x-x") + A, [lx - x|
< (x"-x)"'0d(x). (31)
Rearranging (31), we have

_(x7-0) "I+ @)d(x)

s

Jx - %

2 A Hx e .
< “llace) IL,- (32)
Ay
This completes the proof. ]

Now, we give the following theorem about the
equivalent optimal conditions of (1).

Theorem 3.2 Suppose x* is a feasible point
of (1), the following results are equivalent;

El. x" e X".

E2. d(x*)"g(x") =0.

E3. d(x*)'Qd(x") = 0.
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E4.d(x") = 0.

Proof El= E4.

From P3, d(x") = 0is equivalent to

g(x")'(x-x") =20,Vx e Q.

The above inequality implies that x* is the solution

of the following linear programming
ming(x ") x (33)
s.t. x e Q.

Obviously, (1) and (37) have the same KKT

system, sox” e X".

Since El< E4,d(x") = 0. Then proposition
El= E2 and E1= E3 can be easily obtained. From
E2 and P2, we have thatd(x" ) = 0, which means
E1l is established.

E3=El.

Assume El is not established, that is, x* ¢ X".

From P2 and E2, we haved(x" ) g(x") <0. As f
(x) is quadratic andd(x*)"Qd(x*) =0, we have
fx" +ad(x*)) =f(x") +ag(x”)"'d(x"). Let
o —+ o, then f(x" + ad(x”)) —— o which
contradicts that (1) is bounded below. Thus, x"
belongs to X . Il

According to Theorem 3.2 and P4, we can see

that X* =X™. Then, for all feasible points x ¢ X" ,
d(x)"'Qd(x) > 0.

Thus, the formula (15) and (18) are well defined

unless x, is a optimal point of (1).

Finally, we present the global convergence of
Algorithm 2.

Theorem 3. 3 If Algorithm 2 does not
terminate in a finite number of iterations and the
sequence {p,} has an accumulation point p e (0,
2), then the sequence |f(x,)} generated by
Algorithm 2 converges to f* .

Proof Observe that for all &,

d.(p) = f(x, +pa)”d,)
is a quadratic convex function of the variable p.
From the definition of «)”, we get that ¢, (p)
attains global minimum when p = 1. Hence by
symmetry of the quadratic convex function ¢, (p),
$,(0) =¢,(2) and for any pe [0,2],¢,(p) <¢,
(0). Therefore
di(p) = fx) s f(x),

for all k. The above inequality implies that {f(x,) |

is a  monotonically

Furthermore, f(x,) is bounded below, so {f(x,) |

a convergent sequence,
AE?L (f(x,) - f(x,,,)) =0.

Because p is an accumulation point of {p,} and p €

(0,2), there exists a const 8 € (0, 1) and

decreasing sequence.

(34)

subsequence Py, € [B,2 —-B]. Using the properties
of ¢, we have
fx) ~f(x, ) = 6,(0) = b, (p,)

> ¢,(0) -, (B)

- Bb},(0) - £ (0)

2
= pa)gld, - B ol d]0d,

_B2-p) (&4d)
2 d Qd,
Since g,d, <-d; <0, then| g;d, | = dd,|.

Thus, we have that

B2 - p) (did)’

f(xkj) _f(xlch) =

2 4,04,
B(2-p)d.d,
= 0,0 (35)

Let j— + o in the (35), then
0 = jl,i?i, (f(xkj) _f(xA»N))
B(2-p)d.d,

= m ——(— =

e 20,,(Q)
From the above inequality, we conclude that dki—>0 ,
J— + .

It follows from P4 that X, converges lo some
optimal point x* € X" . Since f(x) is continuous,
we have

fx) > f.
As {f(x,) | is decreasing and bounded from below,

the whole sequence {f(x,)| converges to f*. [

4 Numerical experiments

In this section, we report the numerical results
of the project gradient methods proposed in this
paper. The test problems are designed based on nine
parameters n,m, ncond, [ , u_, l,, u,, I, u,. In

particular, we denote Q =PAP", where

3
P =1 -200)
i=1
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and w,, w,, w; are random unit vectors, and A is

diagonal matrix whose i-th component is defined by

logA, =

— llncond, i =1, ,n.

The initial point x,, matrix A and the linear term ¢
are generated by Matlab function rand with entries in
U0, uwl, [, u], [l, u ] respectively. b is
built asb = Ax,. In our tests, we have fixed ([,
w,, by, uy, L, w,)=(0-5,5,-10,10, -10,10).

m, n, and ncond are positive integers chosen

randomly in the interval [50,800], [ 1 000,2 000 ]
and [2,6] by the function randint respectively. As
the stopping criterion we use

ld, . <107 d, ] ..

All tests are conducted on a Windows XP
professional computer ( Pentium R, 2.79 GHZ)
with Matlab 7. 10.

Firstly, we generate 100 random test problems
to test the PBB method and the MPBB method with
M=1,2,---,15. The numerical results are reported
in Table 2, where Aiter and Asec denote the average
number of iterationsand time required with regard to
these 100 test problems respectively.

From Table 2, we see that the PBB method
performs worse as M (M > 6) increases with rare
exception, so does the MPBB method (M >2). On
the

methods have a tendency to ascend with the growth

the whole, iterations and time of these two

of M. At the same time, we suggest M =6 for the
PBB method and M =2 for the MPBB method. Also
we conclude that the MPBB method performs much
better than PBB method.

Table 2 Testing the PBB and MPBB methods

as M increases

PBB MPBB
" Aiter Asec Aiter Asec
1 309. 96 3.85 176. 37 2.58
2 282.61 3.61 138.73 2.14
3 277.23 3.57 145. 46 2.25
4 268. 54 3.49 154. 15 2.30
5 277.43 3.57 149. 62 2.27
6 268. 04 3.47 154. 87 2.29
7 277. 60 3.56 155. 44 2.23
8 282.33 3.61 156. 89 2.33
9 278.53 3.57 156. 09 2.33
10 282.42 3.58 157. 24 2.32
11 285.95 3.64 166. 88 2.44
12 291.98 3.72 170. 28 2.49
13 297.73 3.76 172.13 2.45
14 303. 85 3.80 176. 87 2.56
15 295.85 3.73 177.33 2.52

Table 3 lists the numbers of iterations and time
required by the PSD, PBB (M =6), MPBB (M =
2) and PSY methods for 15 random problems. From
this table, we can clearly see that the PSD method is
significantly slower than the other three methods.
Although, the PSY is slightly worse than the MPBB
method, the PSY method performs better than PBB
method. What’ s more, the MPBB method proposed

Table 3 Comparison of numerical results for random test problems among the methods

Problem PSD PBB MPBB PSY

ncond m n Iter Sec Tter Sec Iter Sec Iter Sec
2 661 1906 145 3.73 47 2.04 33 2.15 43 2.58
5 793 1833 5553 84.23 402 7.84 201 5.41 232 7.73
2 258 1805 251 4.11 59 1.31 52 1.28 54 1.88
3 242 1288 1195 8.88 118 1. 09 121 1.22 119 1.58
2 383 1015 129 0.94 41 0.48 40 0.59 42 0.70
4 676 1334 1035 9.25 137 2.08 93 1.78 126 2.70
2 716 1 686 117 3.03 41 2.01 32 2.05 46 2.30
2 226 1802 241 3.63 61 1.48 52 1.30 62 1.92
4 418 1388 3107 25.16 207 2.29 153 1.84 179 2.75
6 322 1107 22 329 123. 30 810 4.77 262 1. 64 418 3.75
3 470 1914 1005 15.17 111 2.52 118 2.92 147 4.42
5 78 1910 25911 469 548 9.81 192 2.95 208 4.72
6 489 1906 26 883 486. 67 1 090 21.93 253 5.97 227 7.25
2 638 1128 69 1.39 40 1. 18 26 1. 14 25 1.16
5 689 1777 6 569 102. 78 357 7. 60 194 5.28 255 8.06
5 399 1511 14 087 161. 25 519 5.93 237 3.37 300 5.92
4 766 1 060 225 2.38 74 1.58 49 1.43 50 1.54
average 6 403 88.53 274.23 4.47 124 2.49 149 3.59
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by us is not only to guarantee the convergence of
PBB method but also to perform much better than

the latter one.

5 Conclusions

In this paper, we proposed two methods,
MPBB and PSY, for quadratic programming with
linear equality constraints ( QPLE ) based on the
efficient step length selections and have established
their convergence under mild assumptions. Our
numerical results demonstrate that the new project
gradient methods with these step selection rules have
superiority over the methods with classical step

length.
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