535 B4 4 ] HEMFERXFEFER Vol. 35 No. 4
2018 4E7 H Journal of University of Chinese Academy of Sciences July 2018

X E S :2095-6134(2018)04-0433-05

Iterated Hardy-Littlewood maximal function”

+
WANG Zequn, YAN Dunyan

(School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
(Received 28 March 2017 ; Revised 26 April 2017)

Wang Z Q, Yan D Y. Iterated Hardy-Littlewood maximal function[ J]. Journal of University of Chinese Academy of
Sciences, 2018 ,35(4) :433-437.

Abstract In the paper, we investigate the iterated non-centered Hardy-Littlewood maximal function
and the iterated centered Hardy-Littlewood maximal function. We prove that the limit of the iterated
maximal function is just a fixed point of maximal operator. As an application of the fixed point theory,
we finally obtain that the fixed point is || f || . for non-centered Hardy-Littlewood maximal operator.
The same is true for the centered Hardy-Littlewood maximal operator only forn = 1,2.
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Define the centered Hardy-Littlewood maximal

M) = s [ 10 1y (2)

where B is a ball and B(x,r) is a ball with the

center at the point x and the radius r. The basic real-

function by

1
M) = sp g T, 1 A1

(1) variable construct was introduced forn = 1 by Hardy
and the non-centered Hardy-Littlewood maximal and Littlewood'" and for n = 2 by Wiener®'. 1t is
function by well-known that the Hardy-Littlewood maximal
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function plays an important role in many parts of
analysis. It is a classical mean operator frequently
used to majorize other important operators in
harmonic analysis.
It is clear that
M f(x) < Mf(x) <2Mf(x)  (3)
holds for all x e R". Both M and M are sublinear
operators and the two functions Mf and M_ f never
vanish unless f = 0 almost everywhere *'. The study
of the boundedness for M or M_ is fairly complete'*'.
The primary purpose of this paper is to study the
properties of the iterated Hardy-Littlewood maximal
function.
Let M be the non-centered Hardy-Littlewood
Define the

non-centered Hardy-Littlewood maximal

maximal function defined by (2).
iterated
function denoted by M**" as follows ;

M*f(x) s = M(Mf) (%), (4)
fork =1,2,--+, andx eR". Set M'f(x): = Mf(x).

In the same way, we can set

MO s = M) (). (5)

We all know that both operators M, and M have
the L’-boundedness and the two maximal functions
M, fand Mf have a little difference in the pointwise
sense from inequalities (3). We want to investigate
the limit of the iterated Hardy-Littlewood maximal
function.

Wei et al’! studied the limit of M*f and
obtained Theorem A as follows.

Theorem A  For any f e L (R"), the equation

() = /] (6)
holds for any x eR".

For M,, we want to know whether it has the
same properties as M. Unexpectedly, the limit of M'f
is essentially different from the limit of M"f.

Now we formulate our main results as follows.

Iffe L, (R") andx € R", then

loc
LimM f(x) = | f] .. (7)
holds for every x e R"if and only if n = 1,2.
Theorem C Letf e L, (R"). We have

loc

limM(x) = /],

for every x eR"and any n e N.

Theorem B

We remark that the range of function f in

Theorem C is wider than that in Theorem A.
Furthermore in this paper we will use some novel

ideas to prove Theorem C.

1 Fixed point of Hardy-Littlewood
maximal operator

To prove our main theorems, we first provide
some definitions and lemmas which will be used in
the follows. Some lemmas can be found in classic
literatures and here we omit their proofs.

Definition 1.1 A function F is called a fixed
point of a operator T, if

TF(x) = F(x) (8)
holds for all x eR ".

Obviously if Fis a fixed point of the operator T,
then we have

I}LIET“F(x) = F(x).
By the Lesbegue differentiation theorem, for
almost allx eR", we have
M, f(x) =] f(x) |
and
Mf(x) =| f(x) 1.
For the iterated Hardy-Littlewood maximal
operator, we have the following lemma.

Lemma 1.1 Forx eR", andk = 1, the two
inequalities

M f(x) = M'f(x) (9)
and

M f(x) = Mf(x) (10)
hold for all f € L, (R").

loc

Proof Set E = {x:x is not the Lesbegue point

of If1}.

theorem that m( E) = 0. Actually we merely need to

It follows from the Lesbegue differentiation

prove

Mf(x) = Mf(x)
forallx eR".
We conclude that

Mf(x) = %ggﬁﬁg L f(y) | dy
1
= 0 g e | OO T

1 . 1
=S TRT I d
i B\L\E{lﬂ,ﬁ Bly ) Do 00 du} y

1 1
390 T M)Ay = sup e MACy) dy

N
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= Mf(x). (11)
Using the completely same method, we can
obtain that M’ f(x) = M, f(x). [l
By Lemma 1.1,
increases, the limit of M'f(x) exists for allx € R".
Iff e L, (R") is a fixed point

loc

. e
since  M'f monotonously

Lemma 1. 2
of M, then there exists another functionf, ¢ C* (R")
N L, (R") such thatf,is a fixed point of M, as well.

loc

Proof Set¢p e C7 (R") such that
jRn(;b(x)dx = 1.

Fort > 0, set
fo =%,
where ¢, (x) =1"p(x/t), for allx eR". Obviously
we have
fe C*(R") NnL,(R").
Put

1
Xr —= ‘B, XB,'

The centered Hardy-Littlewood maximal function is

written by
M. (f)(x) = squXr* I £l (x). (12)

Note fis a fixed point of M,. This implies f = 0. We
have that

X (62N () = [ 6.0 G #r, ) () dy

< [ OM (7, ) (0)dy = b+ M () (x)

= f,(x). (13)
On the other hand, it follows from (12) and (13)

that M, (f,) (x) =M (¢, *f)(x) = supy, = | ¢, *f]

r>0

(x) <f,(x). Since f, is smooth function, it follows
from the definition of M, f that
M. (f) (x) = f,(x).

Thus we obtain that f; is a fixed point of M.

Using the similar method, we can easily prove
that f, is a fixed point of M if fis a fixed point of M.

L]

Lemma 1.3  There is a non-constant fixed
point of M, in L, (R ") if and only if there exists a
non-negative upper-harmonic function.

There is a non-constant fixed point of M in

L, (R") if and only if there exists a non-negative

functionf e C* (R") N L;,,(R") such that f(x) =

Mf(x) for allx eR".

Lemma 1.3 is due to that for a smooth
function, every point in R "is its Lesbhegue point.
We only need that f(x) = Mf(x) to guarantee that
the function is a fixed point.

Lemma 1.4 If fis a non-constant and smooth
function, and f'is a fixed point of M, then, in any
closed ball, the minimum value of fis gotten only in
the sphere.

Lemma 1.4 has the same proof as the proof of
extremism principle of harmonic function. For the
details please see Ref. [6].

Lemma 1.5 Suppose that f is a fixed point
of M. Iff e L, (R"), then we have f = C < o ; if
fe L, (R"), then we have f(x) = o.

Proof. Since fis a fixed point of M, it follows
from Lemma 1.2 that there exists f, € C*(R") N
L. (R") such that f, is a fixed point of M as well.

Suppose that Bis a ball inR"andf, e C* (R")
(R") such that Mf,(x) = f,(x) for allx eR".

We use the proof by contradiction.

N L,
If f, is not a constant, then, by Lemma 1.4,
there is at least one pointx e 0B such thatf,(y) >
f,(x) holds for all y e B°.

Note that f, is a fixed point of M. Thus we have
that

OB 1 O 1

filx) <

1
= mLlf,(y) Iy < Mfi(x) = f,(x).

(14)

This is impossible. Consequently it implies that
fi(x) =Cforallx eR".

Next we will prove that f(x) = Cfor allx eR".

Choose a radial nonnegative function ¢ e
CZ(R") such that
fanf)(x)dx =1,suppp C {x eR": | x| <1}
and p(x) = p(x') for0 <l x| <l 2.

For eacht > 0, we have f,(x) = C.

Set B, = {x eR": | x| < R}, forR > 0. We

conclude from Lemma 1.2 that

C=fi(x) = [ oy +Sxana) (59 b (9)dy
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:fXBR*d’,(x) +fX[R”\BR*d)1,(x>' (15)
It follows from (15) that
ltij)leBR k¢, (x) + ltif{)leR"\BR *¢p,(x) = C.
(16)
Note thatf e L, (R"). Thus we havefy,, € L'(R").
This implies that
lim fxs, * 6 (6) = fxa (6)  (I7)
for almost every x eR". By the property of convolution,
we get that
supp fxpms, ¢, C {2 e R": 1 a1 =R —1f.
(18)
Combing (16), (17) with (18) yields that
S (2) +1im fygup, * b, (y) = C
holds for almost every x € R". This is equivalent to
that
fXBR(x) =C
holds for almost every x € R". Let R— oo , then we
have
flx) =C
for almost every x € R". This implies that Mf(x) =
C for everyx € R". Note thatfis a fixed point of M,
that is,
Mf(x) = f(x).
Thus we must obtain that
flx) =C
for everyx € R".

Iff¢ L, (R"), then there is a ball B such that

Llf(x) | dv = .
We have Mf(x) = . So we have f(x) = o for
everyx e R". (]
We remark that M, has essential difference with
M with respect to the fixed point. We all know that

2-n -

when n = 3, the function f(x) = «x | is a

harmonic function in R"\{0}. In fact, we can easily
check that f(x) =1 x|° ™" is a fixed point of M.
Korry'”’ obtained the following lemma 1. 6.
Lemma 1.6 For the M_, iff e L, (R") with
n =1,2andM_f = f, then we have f = C = 0.

2 Main theorems

In the section, for any local integral function,

the limit of the iterated Hardy-Littlewood maximal

function is a fixed point of Hardy-Littlewood maximal
operator.
Theorem 2.1 Write
}LTMLf(x) = F(x).
We have
That is, F a fixed point of M.
In the same way, write
b f(x) = F(x),
then M F (x) = F,(x). That is, F_ a fixed point of
M,.
Proof We only prove the first part of Theorem
2. 1. It follows that
MF(x) = M}irEMkf(x) =

S0P Gy B (19)
Associate to an arbitrary & > 0 B, 5 x such that
WE() = o< g |, lm(dy
< lim l J M'f(y)dy
P (B b,
< girLle+lf(x) = F(x)
< MF(x). (20)
That is
MF(x) = F(x). (21)

O

Lemma 2.1 Write
}ikaf(x) = F(x).
If F(x) = Cfor all x e R", then we have C =
1Al -

Proof Since F(x) = C, it implies from the
definition of Hardy-Littlewood maximal function that
C< ||f] .- By the definition of essential supremum
of function, associate to an arbitrary & > 0, a set
E C R" withm(E) > 0, such that

L) T > IS . - e,
forx € E. Whenx e E is the lebesgue point of f, we
have that
C=F(x) Z2Mf(x) =l f(x) I > | fll.-e
By the arbitrary property of £, we immediately have
C= I/
Consequently we have C = || f| . [l

Next we will prove our main theorems.
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The proof of Theorem B
Proof It follows from Theorem 2.1 that
F.(x) = limM; f(x) (22)

is a fixed point of M..

By Lemm 1.6, if F, € L, (R") withn = 1,2,
then ¥, = C.

Since F,(x) = C, it implies from the definition
of center Hardy-Littlewood maximal function that C
< Ifl..

By the definition of essential supremum of

function, associate to an arbitrary & > 0 a set K C R"

withm(E) > 0, such that
L) T > LS. - e,
forx e E. Sincef e L, (R"), almost every points
in R"is the lebesgue point of f. Choose x e E is the
lebesgue point of /. We have that
C=F(x)=M[f(x) = f(x) I > | fll.-e
By the arbitrary property of &, we immediately have
C= /..

Consequently we have F_ = || f] ...

IfF, ¢ L, (R"), we can easily have F = 0 =

loc

(A O
The proof of Theorem C

Proof It follows from Theorem 2. 1 that
F(x) = I}ikaf(x) (23)

is a fixed point of M.

By Lemma 1.5, if F e L, (R") , then we have
F =C.

It follows from Lemma 2.1 that F = || f|| ...

IfF ¢ L, (R"), then we have ||f] ., = o,

loc

and there exists a ball B(0,R) such that

J' | F(x) | dx = oo.
B(0,R)

Note that F a fixed point of M. We have
F(x) = MF(x) = o.
Consequently, we have F = || f || ... ]
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