%36 55 1
2019 4¢ 1 A

PTEMERXEFEZER

Journal of University of Chinese Academy of Sciences

Vol. 36 No. 1
January 2019

XE S :2095-6134(2019)01-0005-06

A Lie algebraic approach for a class of highly
oscillatory stochastic Hamiltonian systems”

. . see F
RUAN Jialin, WANG Lijin
(School of Mathematical Sciences, University of Chinese Academy of Sciences, Betjing 100049, China)
(Received 26 September 2017 Revised 4 January 2018)

Ruan J L, Wang L J. A Lie algebraic approach for a class of highly oscillatory stochastic Hamiltonian systems[ J].
Journal of University of Chinese Academy of Sciences, 2019,36(1) :5-10.

an important role in the description of phenomena in
many subjects

chemistry, and microelectronics. The Hamiltonian

Abstract In this work, we propose a Lie algebraic approach for numerically solving a class of
highly oscillatory stochastic Hamiltonian systems ( SHSs). For a concrete highly oscillatory SHS, we
construct two numerical schemes based on the Lie algebraic approach, and prove their near
preservation of the symplecticity. We also show by numerical tests their root mean-square
convergence orders, as well as their effectiveness and merits in solving the highly oscillatory SHS.
Keywords numerical solutions of stochastic differential equations ; stochastic Hamiltonian systems ;
highly oscillatory SDEs; operator splitting methods; Lie algebraic approach
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Stochastic differential equations ( SDEs) play system is one of the most important dynamical

systems. All the real physical processes where the

[1-2]

, such as biology, mechanics, dissipation can be neglected can be formulated as

[3]

Hamiltonian  systems Stochastic ~ Hamiltonian
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systems ( SHSs) are the Hamiltonian systems with
stochastic disturbances.
A 2n-dimensional SHS can be written as the

[4-5]

SDE of Stratonovich sense with initial values

P(0)=p, Q(0) =gq,

dP =f(¢,P,Q)dt + i(r,(t,P,Q) o dW (1),

40 =g(1,P,0)di + iy,<t,P,o> CdW(1) |

(1)
where f, g, o,, and y,, r = 1,--- m, are n-
dimensional column vectors, and W.(¢), r=1,---,
m, are independent standard Wiener processes.
There are functions H(t,P,Q), H(t,P,Q),r=1,
«++,m, such that
fi=-0aH/dq ,g' =oH/dp',
o == 0H/dq¢' ,y: =oH /ap'(i =1, ,n).
(2)
Similar to deterministic Hamiltonian systems, the
phase flow of SHS (1) preserves the symplectic
structure characterized by
aY(t) T] aY(t)
( ¥ ) ( 9o
where Y(1) = (P(1)" @(1)") ", y,=(p'q")", J =

0 I,
o)

The exact solutions to SDEs are in general very

)=],Vt20,a.s.,

difficult to obtain. Therefore numerical methods
become important tools for simulating solutions to
SDEs. In recent decades, there arose many studies
regarding different aspects of numerical methods of
SDEs'**. The study of numerical solutions for highly
oscillatory problems is an important branch, to
which many works were devoted, such as Refs.[9-
12]. Standard numerical methods are usually not
suitable for treating such problems tecause they
require very small time step sizes and thus make the
computations prohibitively expensive.

In this work we focus on the stochastic highly
oscillatory problem with initial values P(0) = p,
Q(0)=q,

dP = (e”' - f(P,0))Qdt - ¢Q° dW(1),

dQ = (-€e ' +f(P,Q))Pdi + oPo dW(1),
(3)

where € > 0 is a small number, and f is a scalar
function. It is called the highly oscillatory nonlinear
Kubo o

oscillator ~ with  multiplicative  noise

According to the integrability lemma'™' | it is not
difficult to obtain that the oscillator (3) is a
stochastic Hamiltonian system under the conditions
Pf,=fP", Of, =f,0", Of , =Pf;. (4)
Our motivation is to employ the Lie algebraic
approach to solve this class of highly oscillatory
SHSs (3) with conditions (4), and we establish
highly
oscillatory SHS based on the Lie algebraic approach.

two numerical schemes for a concrete

Further, we analyze the symplecticity of the two
schemes and prove that they nearly preserve the
symplectic structure. Next we investigate their root
mean-square convergence orders, efficiency, and

superiority via numerical experiments.

1 The Lie algebraic approach

Let (QO,.7,{.7} ~,,P) be a complete probability
Consider the SDE of
Stratonovich sense under the probability space (),

space with filtration {.77} ,_, .

Vara

’ t

{\=0,P) , with initial value S(0) =s,,
dS(e) =b(S(t))de + Y g(S(t)) o dW/(1),
j=1

(5)
where b,g;, j = 1,--+,r, are d-dimensional C*
functions and W(¢) = (W'(¢) -, W'(t)) is a m-
dimensional standard Wiener process. Define the

C ® vector fields

d d
X, = 21 b"a,.,Xj = Zg;ﬁa,.(j =1,-,r), (6)
where 9, = 9/9S". There is a representation theorem
in Ref.[ 14] for the solution of SDE (5), which is
the base of the Lie algebraic approach. To state the
theorem, we first introduce some notations.
Given a multi-index J = (j,,-*+,j,) and [ X,Y]
= XY - YX, X’ is defined as
X/ = H[X“ ,ij] o] ’ij].
The divided index Jis a division of the multi-index J
in the form
J= Unsrdi) Ui i) = Ul ).
(7)
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Jis called a single divided index when each J,(k =
1,--,k;) contains a single element, and Jis a
double divided index if each J,(k = 1,--- k,) has
either one element or two duplicated elements.

For a single divided index J , the multiple
Stratonovich integral W;(t) is defined as
Wiy s = [ o dW ey e e dWn(a,),

(8)
where W°(t) = t. For a double divided index f,

W) s = [ dWi(a) e dWi(r,), (9)

where

Wik(t>7 lf-]k:{lk}’
W) ={t, if J, = {i,,i,} and i, #0,
0, if J, =10,0{.

Lemma 1.1 Suppose that the Lie algebra L =
L(X,,X,,*,X,) generated by X,,X,,---,X, is
nilpotent of step p. Then the solution S(z) of (5)
with S(0) = s is represented as S(¢) =exp(Y,) (s),

where Y,(w) is the vector field given by
Y,=Swinx + 3 1YW)K
7

=0 2T <p
(10)

almost surely for each t.
In (10), |J| denotes the length of the multi-

index J, and 2 is the sum taken over all single and
J
double divided indices J of J. Besides, the

coefficients c; are given by

¢ =i§ Z (l B ]) (_ 1)1L]+--<+uk1—x—] x
ms=o ~ s
(uy + o+, =5)
nV1 el "'n;(;,])! ...n;”“fkﬂ! Y

where n{"” (k=1,+,k,, v=1,+,u,) denotes the v-
th element of J,, and u, is the number of elements of
Ji

Given a time discretization {¢,| of the interval
[0,T] with an equidistant step size h, i.e., t, =nh,
n = 0,1,---,N. The Lie algebraic approach to
construction of mnumerical methods follows the
procedure*’ as follows.

® Based on the representation of the solution of

the SDE (5), write the time discretization scheme
S = exp(Y,,) (5,)

® After obtaining a truncated vector field ?n,h
by discarding the higher order terms, construct the
truncated scheme SA,Hl = exp( IA’”’,Z) (SA") ;

® Split f/n,h into f/n,h = A
) and exp(B
calculated. Then, use exp(A4,,)

n,h

+ B,, where

exp(4,, .a) can both be explicitly

exp ( Bn,h) to

approximate exp( Y, ,) to get the numerical

approximation SHI = exp(A",h)exp(an,,)( S L)
with S 0 = So-

2 The Lie algebraic methods for
highly oscillatory SHSs

According to Refs. [ 2, 14 ], we write the
coefficients ¢; in (11) for | J I = 2,3 explicitly.
Furthermore, for convenience of calculations, we

replace the multiple Stratonovich integrals in Y, in

(10) by their equivalent multiple Ito integrals. For
SDE (5) with one single noise, we have

Y, =1,()X, +1,,(1)X, +

%(1(0,1)(” —I“,O)(t))[XO,Xl] +

¢, ¢,

E[[X()’XIJ’XOJ +ﬁ[[X07X1]aX1J +
%“(0,0) + %I(O)<t>}2%[[X07X1:|’X1:| +
Y H()X, (12)

where H'(t) is a version of zc}W"(t), C,
fi
2000 = 21000 Loy di10) = L0y L0,y and €,

2y = 2Uaon o ~Inlon-

Now let us consider the highly oscillatory SDE
(3). Letf(P,Q) =P + Q" and the dimension of the
systemd =2, i.e.,

dP = (e' = (P*+0*))Qdt -~ 0Q- dW(1),
dQ =(-¢€' + (P> +Q%))Pdt + gP - dW(1).
(13)

According to the conditions (4), it is clear that

(13) is an SHS, with Hamiltonian functions
-1
- €

2

1
H(P,Q) = (P*+0) +Z(1"2 +0%)7,
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g 6<P+I7Q +1) ! a(P+17Q +l)
H(P.0)=7(P +0"). s I v R
| 2 TR I WTTORTR I R
Therefore, (13) is a highly oscillatory SHS. (17)
Performing the change of variable s = /€ in S L 3
. with (E(R,))")2 =O0(h?).
(13), we get the equivalent system of (13) ’ ) _
, , ds - J W Proof (17) holds if and only if
P=(1-€(P - °
d ( E( N Q ))Q ) EO’Q (S) ’ aPnH aQn+l aQn+l aPnH
dQ = (-1 +e(P*+Q%))Pds + JeoPo dW(s). - =1+R (18)

(14)

It is not difficult to see that (14) is also an SHS.
Now we apply the Lie algebraic approach to system
(14), for which

X, =(1-e(P"+Q%))QoP +

(-1 +e(P+0"))PiQ,

X, == JeaQiP + JeaPiQ.

We take the truncation Y, , = hX, + AW, X,, and let

n.h
A, = ((1=e(P+ Q%) Qh —JeaQAW,) P,
B,,=((-1+e(P"+Q"))Ph +

JeaPAW,) Q.
For simplicity, we denote F(p,q) = (1 — €(p’
+¢°))h — JeaAW,. If we choose the operator
splitting f’n,,, =A ., +B

n,h n,h o

exp (= 2¢P,0,.,h) — 1
P =P +F(P,,0,.,) ‘ ,

we get the scheme

- 2eP h
exp (2eP,Q,h) — 1
=Q, - F(P
Qn+l Qn ( n 7Qn> 2€Q”h
(15)
5 Bn h
If we choose the operator splitting ¥, , = —— +

n,h .
A+ — e obtain the scheme

exp (- 2eP, (N)”h) -1

P, =P, +F(P,Q,)

- 2eP,h ’

~ 1 ~ exp (2P, Q,h) - 1

Qn+l = Qn - ?F(Prwl ’ Qn) - )
2 Q,h

(16)

~ 1 exp (2eP,Q.h) — 1

h =, -—F(P

W ere Qll Q” 2 ( n ’Q”) 2€Q”h

Theorem 2.1  The Lie algebraic schemes
(15) and (16) for the highly oscillatory SHS (14)
nearly preserve the symplectic structure with error of

root mean-square order 3/2, i.e.,

aPn aQn aP’l aQ’l
with (E(R)*)T = O(h7).

For convenience, the left parts of (18) for the

Lie algebraic schemes (15) and (16) are denoted

by I, and I,, respectively. Then, according to (15)
and (16), we have

- 3
I, =1 +e2a(3q, +p,)hAW, + O(h*),

- 3 5
IL,=1+e0(2¢ +? 2YRAW, + O(h*).

1 1
Due to (E(AW)?)2 = h2, it is not difficult to get

the conclusion. ]

3 Numerical experiments

In this section, we illustrate the performance of
the Lie algebraic schemes via numerical tests.
Throughout the section, the reference solution is
computed by high-order schemes with a sufficiently
small step size.

In Fig.1(a) we show the sample trajectories of
(16)
(yellow), and a trigonometric integrator in Ref.
[11] (green) for the highly oscillatory SHS (13),
with the initial valuesp =0, ¢ =1 and the parameters
€=0.01,0=0.3,0nt € [0,1]. The step size is

h=27. The blue and yellow lines coincide visually

the numerical solutions ( 15) ( blue ),

with the red line which is the sample trajectory of the
reference solution. Hereby we construct the two
schemes (15) and (16) by involving the time-
rescaling change of variable in our Lie algebraic
methods, on the equivalent but time-rescaled system
(14) of (13), and we apply the trigonometric
method directly to (13) to draw the green line, with
the same time step size h =27,

In Fig.1(b) is the sample trajectory of the Lie
algebraic scheme (15) under a higher frequency

parameter € = 0. 001, which is also visually in good
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1.5

reference solution
——-Lic algebraic scheme (15)
10 Lic algebraic scheme (16)

\ trigonometric integrators | |

0.5
,IO 4 T ¢ ) v ¢ -
,IS 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1.0
4
(@

15 T T T T T
——-Lic algebraic scheme (15)
— reference solution

1.0

71'50 0.1 02 03 04 05 06 07 08 09 1.0

{
(b)

Fig.1 The sample trajectories

coincidence with the reference solution. The initial
values are p =0, ¢ =1. We take o =0. 3 and the step

size h =27°.

1.5 T T T T T
——reference solution
- - - Lie algebraic scheme (15)
1.0 | ]
05
oo |
0.5
-1.0
-1.5 . .
-1.5 -1.0 -0.5 0 0.5 1.0 1.5
I)
(@

In Fig2(a) and Fig.2(b) we show the preservation
of the invariant quantity P(1)° + Q(1)> = p° + ¢° of

system (13)""" by the two Lie algebraic schemes.
1.5 T T L—
——reference solution
Lie algebraic scheme (16)
1.0 [
051
(SIS
-05 1
-1.0 1
15 . . . . .
-1.5  -10  -05 0 0.5 1.0 1.5
‘I)
(b)

Fig.2 The phase trajectories

In Fig.2, the initial values p = 0, ¢ = 1 and the
parameters € = 0.01, o = 0.3. The step size is h=2".
As shown in Fig. 3(a) and Fig. 3(b), the root

mean-square convergence orders of the Lie algebraic

2.5 T T T T T
- e -Lie algebraic scheme (15)
reference slope 1
3.0 |
B
5 351
o
g
g
z 4.0
b5
£
g 4.5
=
2
5.0 |
=55
-6

schemes (15) and (16) are both 1.
compute the error at T=1 and takep =0, g=1, € =
0.01, o =

sampled for approximating the expectation.
-3.0

Here we

0.3. Five hundred trajectories are

- e -Lie algebraic scheme (16)
reference slope 1
351
=
S
E 4.0
g
:.. -4.5
§
g 50¢
g
£ 55
2
-6.0
_65 I I L L L
-6 =55 -5 4.5 -4 -35 -3
log h
(b)

Fig.3 The convergence orders
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