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Abstract  Although there are many procedures developed for handling multiple outcomes
comparison in the literature, the nonparametric methodology for group comparison with covariate
adjustment is still in its infancy. One can use rank-sum test, adjusted rank-sum test, or max-type
test by analyzing the processed data orthogonal to the space spanned by covariates. However, the
power is not satisfactory. In this work, we combine the adjusted rank-sum test and pseudo F test and
then construct a MIN2 test to handle this issue. The performances of MIN2 are thoroughly explored
by extensive computer simulations and a real example.
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Multiple outcomes comparison is frequently
encountered in many research areas. For example,
in a plasma-renin activity clinical trail "?'
investigators aimed to see whether the drug fenoterol
increases or reduces plasma-renin activity, five
endpoints described by five occasions (after 0, 2,
6, 8, and 12 h) were measured. In genetics, in
order to see whether the genetic variants increase the
risk of disease occurrence, investigators often collect
two groups of individuals with the case group
suffering from disease and the control group being
healthy, and many outcomes described by genetic
variants are genotyped on them. In genomics, to
investigate the age-dependent regulation of gene
expression in human brain, RNAs harvested from
postmortem samples of 30 individuals were analyzed
using Affymetrix gene chips and the aim was to see
whether the gene expression patterns varied among
two groups categorized by age of 73 with adjusting
for gender'’’.

Many procedures including parametric and
nonparametric ones have been developed in the
literature. A classic method is the Hotelling’ s T” test
(HT)'*', which is the optimal invariant test when
distribution  with

data  follow multinormal

homoscedasticity. If the normal assumption is

violated, the non-parametric methods are rank-sum
test (RST) "/, adjusted rank-sum test ( ARST) ol
and rank-maximum test (MAX)'"). The above tests
were derived without adjusting for covariates.
However, in a real application such as the ageing
human brain data"® analyzed later, the investigators
want to see the differences of multiple patterns
between cases and controls after adjusting for
gender. At this point, covariate adjustment is
essential, and it reduces the bias and improves the
precision of the comparison ( see Refs.[ 8-127).

In this work, we combine a version of ARST
and the pseudo F test, which was developed to
handle the ecologic data in Ref.[ 13] and can be
thought as a non-parametric version of multivariate

[14-17]

regression model' "' | and propose a MIN2 test.

1 The MIN2 test

Consider two groups, group 1 and group 2.

Suppose that there are n, and n, subjects sampled
from the two groups, respectively, and k (k> 1)
outcomes are measured on a continuous scale on
each individual. Let n=n,+n,, Y, and X, be the
response and covariate matrices for group 1, with
dimension of n,;xk and n,Xd, respectively, and Y,
and X, be the response and covariate matrices for

group 2, with dimension of n, Xk and n, X d,

1

Y, X
respectively. Define Y = (Y) and X = ( ) . The
2

2
problem of interest is the extent to which the
differences between the two groups are maintained
after covariate adjustment. Therefore, the null
hypothesis can be expressed as follows;

H,: There is no difference between the two
groups after covariate adjustment.

When considering the covariates, the HT,
RST, ARST, and MAX can not be applied directly.
So we project Y orthogonal to the space spanned by
covariates X to get the residual matrix E, that is,

E,

E=(I,-H,)Y = (Ez) ,

where I, is n-dimensional identity matrix, H, = X

(X'X)'X", E, and E, are matrices with dimension

of n,xk and n,xk, respectively. Denote E=(e,, ),

u=1,2,--,n, and v=1,2, -+ k. The marginal

distributions corresponding to e,, and e, are F, and

G,,

HT, RST, ARST, and MAX mentioned above can
be obtained based on E.

The ARST was proposed in Ref. [ 6] to

accommodate the null hypothesis

nv

respectively. At this point, the tests such as

Hy:0, =Pr(e, <e,) = Pr(e, >e,)=0,0=
and R, be the

mid-ranks of e, and e, ,i=1,2,--,n;,j=n+1,n+

1,---,k. For the v, outcomes,let R

liv

k k _
2,---,n.Define R, = lemsz‘ = Zszv, R, =
v=1 v=1

ny

1 -1 R -
—Y R, ,R,=— Ry,01=—Y (R, -R,)?,
nI; 1 »I% n, j=§,’+1 21,01 nl;( 1i 1)
;2=i 2 (R, -R,)> and;2=;((n -1)
2 n, ;= 2j 2 ) n-2 1

o7 + (n, = 1) ¢3). Then the ARST can be written

as
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T,

e , (1)
o Jh(1/n, + 1/n,)

where h is a consistent estimate (see Ref.[6]) of

k k
> Y (1 +2)(a, +b,A)
=1 o=1

u
k s

k
> D le At + (b, + 2,01 + (a, +29,)A +p,]
1

=1

=
1

a,, = cov(G(e,,), Gle,)), b,, = cov(F (e, ,).F (e,,)),
e,, = cov(F(e,,).F(e,)), f,, = cov(F (e,) Gle,,)),
Pus = cov(Ge,,) Gle,,)), q, = cov(Ge,,) Fle,)),
and A = n,/n,.

The ARST maintains

alternative parameter space when 6,s lie in the same

good power in the

direction. When 6,s lie in different directions or the
magnitudes of some of @,s are large, the test may
suffer from substantial loss of power. So, a MAX test
was proposed in Ref. [ 7] to address this issue.
However its power is not optimistic when most of the
endpoints provide evidences and these evidences are
not so strong.

When 6,s lie in different directions or the
magnitudes of some of §,s are large, the Kendall 7
distance is applied in identifying this difference very
well. The Kendall 7 distance between two groups of
observations is defined as the total number of
discordant pairs. The larger the distance, the more
be the

Kendall 7 distance matrix based on Y and S =

dissimilar both groups are. Let D = (d,,)

nxn

1
($4) pey Withs, == —d; ,1,m =1,2,+-- n. Denote

o Gimots
G = (G,,G,,--,G)", which is the group status
column vector, with G; =1 for group 1 and G; = 0 for
group2,i=1,2,-- n,,j=n, +1,n, +2,--- n. Let
Z = (X,G) be the H, =
X(X'X)'X",H,=Z(Z'Z)"'Z",and C =1, -

design matrix,

n”'JJ" be the centering matrix, where I, and J are

the n X n identity matrix and the n -dimensional

column vector of 1., respectively. The pseudo F

statistic '"*' based on Kendall 7 distance can be
expressed as

tr[ (H, - H;)CSC]

"~ w[I -H,)CSC]

(2)

Let p, be the p -value of T, and p, be the p -value
of T,, where p, can be obtained by the normal
distribution and p, is obtained by permutation
procedure 4 We propose an MIN2 as

MIN2 = min(p,,p,). (3)

The MIN2 test integrates the superiorities of T),
and T, and is thus more robust than T, and Tj.
However, the asymptotical distribution of MIN2 is
not known. We recommend to use the permutation
procedure to get the p -value of MIN2,

1) set a large number B, for example B=1 000,
MIN2

observations, denote it by 1](0) ;

and calculate the statictic  using  the

2) for b from 1 to B, randomly permute n
observations and arrange the first n, samples to group
1 and other n, samples to group 2, and calculate the
MIN2 statictic, denote it by n(b) ;

3) the p -value of the MIN2 statictic is calculated
#n® <n®.b= 12, B

R .

as p-value =

2 Simulation studies

We conduct simulation studies to evaluate the
performance of the proposed MIN2 with HT, RST,
ARST, and MAX. The empirical type 1 error rates
and powers are simulated using data from two
distributions; Log-normal and Laplace distributions.
To study the influence of small sample size, we
consider n, = n, e 1{20,25,30,35,40,45,50}.
Assume

Y=Xy+GB +e, (4)
where X ~ N(0,%), % = (o) witho, =1land o,
=0.2(i#j) fori,j € {1,2,3,4}, Gis a column of
the group status indicator, 9y is the matrix with the
element being 1, € follows two distributions: (1)
multivariate Log-normal with logs having mean vector
0 and covariance matrix A; and (ii) Laplace
distribution with mean vector 0 and covariance
matrix A. A is a 10-dimensional positive definite
matrix with A, = 1 fori e {1,2,---,10} and A, =
p =0.3(0.7) fori #j e {1,2,:-,10}. Then the
null hypothesis testing on §, = 0 can be transformed
asB, =0,0 =1,2,---,10.

To evaluate the type I error rate, we setB, =0,
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v=1,2,---,10. 1 000 replicates are conducted and
the nominal significance level is set to be 0. 05. The
results for Log-normal and Laplace distributions are
summarized in Table 1 and Table 2, respectively. In
Table 1, it is seen that the HT is a little bit
conservative with the empirical type I error rates
being less than 0.05 and the MAX is optimistic
when the sample size is small. The other three tests
maintain good type 1 error rates, which are close to
0. 05. Similar phenomena are observed in Table 2.
For example, when the data are Log-normal
distributed with the sample size of 40, the empirical
type I error rates of HT, RST, ARST, MAX, and
MIN2 are 0.038, 0.048, 0.047, 0.069, and
0. 046, respectively, as p=0.3 and 0. 034, 0. 045,
0.045, 0.065, and 0.048, respectively, as p =
0. 7. When the data are generated from the Laplace
distribution with the sample size of 40, the empirical
type I error rates of HT, RST, ARST, MAX, and
MIN2 are 0. 054, 0.046, 0.047, 0.072, and 0. 046,
respectively, as p=0.3 and 0.054, 0.049, 0.050,

0.066, and 0. 052, respectively, as p=0.7.

Table 1 The empircial type I error rates of HT, RST,
ARST, MAX, and MIN2 when the data are generated

from ten-dimensional Log-normal distribution

p n;=n, HT RST ARST MAX MIN2

20 0.035 0.048 0.048 0.102 0. 049
25 0.037 0.051 0.052 0.087 0.058
30 0.034 0.054 0.054 0.081 0. 054
0.3 35 0.033 0.047 0.046 0.075 0. 057
40 0.038 0.048 0.047 0.069 0. 046
45 0.034 0.046 0.046  0.060 0. 047
50 0.037 0.052 0.054 0.058 0. 057
20 0.031 0.043 0.045 0.087 0. 044
25 0.038 0.050 0.053 0.080 0. 055
30 0.035 0.045 0.047 0.076 0.043
0.7 35 0.034 0.058 0.059 0.068 0. 053
40 0.034 0.045 0.045 0.065 0. 048
45 0.037 0.051 0.055 0.063 0. 049
50 0.037 0.052 0.054 0.058 0. 057

Note ; The nominal significance level is 0. 05 and 1 000 replicates

are conducted.
To make power comparison, two types of

alternatives are considered :
(a)p=1(0.3,0.3,0.3,0.3,0.3, - 0.3, - 0.3,
-0.3,-0.3,-0.3)";
(b)B =(0.5,0.5,0.5,0.5,0.5,0,0,0,0,0)".

The results for Log-normal and Laplace

Table 2 The empircial type I error rates of HT, RST,
ARST, MAX, and MIN2 when the data are generated

from ten-dimensional Laplace distribution

p  nm=n, HT  RST ARST MAX  MIN2

20 0.049 0.048 0.050 0.108 0.056
25 0.046 0.039 0.041 0.086 0. 046
30 0.045 0.049 0.050 0.082 0. 053
0.3 35 0.046 0.052 0.055 0.076 0.055
40 0.054 0.046 0.047 0.072 0. 046
45 0.042 0.045 0.047 0.067 0. 050
50 0.046 0.058 0.058 0.062 0. 043
20 0.038 0.054 0.059 0.083 0. 045
25 0.046 0.040 0.043 0.059 0. 046
30 0.045 0.047 0.051 0.067 0. 048
0.7 35 0.046 0.058 0.058 0.065 0. 055
40 0.054 0.049 0.050 0.066 0.052
45 0.042 0.057 0.061 0.066 0. 054
50 0.046 0.045 0.047 0.0064 0. 048

Note ; The nominal significance level is 0. 05 and 1 000 replicates

are conducted.

and 2,
respectively, with p = 0.3 on the left panels and p =

distributions are displayed in Figs. 1

0.7 on the right panels. For scenario (a), we can
see that the RST and ARST have smallest powers,
which are close to 0.05. It is reasonable since the
differences among the outcomes are counteracted.
With the increase in the sample size, the powers of
HT, MAX, and MIN2 increase. The MIN2 is the
most powerful among all the tests. Sometimes, the
power increase for MIN2 reaches more than 30%
compared with other tests. For example, for Log-
normal distribution, whenn, =n, =30andp = 0.3,
the empirical powers of HT, RST, ARST, MAX,
and MIN2 are 0.266 , 0.038 , 0.040 , 0.427 ,
and 0. 775 , respectively. Whenn, =n, =30andp =
0.7, the empirical powers of HT, RST, ARST,
MAX, and MIN2 are 0.643 , 0.055 , 0.064 ,
0.384 , and 0.980 , respectively. For Laplace
distribution, the power increase for MIN2 is
sometimes more than 10% over other tests. For
example, for scenario (b) whenn, =n, =25andp =
0.3, the empirical powers of HT, RST, ARST,
MAX, and MIN2 are 0.439 , 0.144 , 0.151 ,
0.498 , and 0. 72, respectively. When n, =n, =25
and p = 0.7, the empirical powers of HT, RST,
ARST, MAX, and MIN2 are 0.895 , 0.182 ,
0.190 , 0.538 , and 0. 997 , respectively.
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Fig.2 The empirical power values of HT, RST, ARST, MAX, and MIN2 when the data are

generated from the ten-dimensional Laplace distribution

Next, we consider the influences of large

sample size and dimension on the efficacy of our

MIN2. The simulation data are generated from (4),

where e follows Laplace distribution with mean

vector 0 and covariance matrix (A;) , where A; =1

fori e {1,2,- k! andA; =p =0.3(0.7) fori #

j e {1,2,--- k}. Here we consider two types of

alternative hypotheses

(c) (ﬂl = =0,,=0.05,8,,, =

~0.05)";

() (Bi=""=By,=0. 1,85, ="

=B :0>T-

The results are shown in Table 3. It can be seen
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that the power of MIN2 increases with the sample
size when the dimension is fixed. For example , when
k =20 and p = 0. 3 under scenario(c) , the empirical
powers of HT, RST, ARST, MAX, and MIN2 are
0. 137, 0.055, 0. 054, 0.120, and 0.262 for n, =
n, = 100 and 0.270, 0.052, 0.052, 0.151, and
0. 609 for n, =n, =200, respectively. Similarly, the
power of MIN2 rises drastically with the increment of

the dimension relative to other tests when the sample

size is fixed. For example, when n, = n, = 100 and
p =0.7 under scenario (d), the powers of all the
tests are 0. 234, 0.088, 0.091, 0. 148, and 0. 480
for £ = 10, 0.344, 0.093, 0.092, 0.153, and
0.657 for k£ = 20, and 0.434, 0.105, 0.106,
0. 155, and 0. 808 for & = 30, respectively. So, the
performance of our MIN2 is superior to the other
tests in the two cases when the sample size or

dimension becomes larger.

Table 3 The empircial power results of HT, RST, ARST, MAX, and MIN2 when the data are generated

from the k-dimensional Laplace distribution with large sample size

p =03 p =07

e k HT RST ARST MAX MIN2 HT RHT ARST MAX MIN2
Power (B8, = =+ =B, = 0.05,8,,,; = - =B, =—0.05)
100 10 0.119 0.048 0. 047 0.110 0. 186 0.230 0. 053 0. 055 0. 108 0. 479
20 0.137 0. 055 0. 054 0. 120 0.262 0.333 0. 042 0. 042 0.113 0. 675
30 0. 163 0. 058 0. 057 0.124 0.348 0. 441 0. 055 0. 055 0.114 0.789
200 10 0. 199 0. 046 0. 047 0.134 0. 396 0. 454 0. 052 0.051 0. 141 0. 816
20 0.270 0. 052 0. 052 0. 151 0. 609 0.678 0. 053 0. 053 0. 145 0.983
30 0. 381 0. 044 0. 044 0.157 0.793 0.811 0. 055 0. 055 0. 156 0. 996
Power (B = -+ = Bn = 0. 1,854 = . = 0)

100 10 0.116 0.123 0.124 0.162 0.231 0.234 0. 088 0.091 0. 148 0. 480
20 0. 156 0. 131 0.134 0.197 0. 305 0. 344 0. 093 0. 092 0. 153 0. 657
30 0. 166 0. 148 0. 148 0.212 0. 360 0.434 0. 105 0. 106 0. 155 0. 808
200 10 0.224 0.184 0.184 0.249 0. 426 0.441 0.099 0. 101 0.221 0. 809
20 0.309 0.188 0. 190 0.279 0.613 0. 691 0. 104 0. 104 0.241 0.979
30 0.391 0. 205 0. 205 0.308 0. 803 0. 810 0.123 0.124 0.267 0. 996

Note: The nominal significance level is 0. 05 and 1 000 replicates are conducted.

3 Application

We apply the HT, RST, ARST, MAX, and
A

total of 30 samples are divided into two groups on

MIN2 to the data on the aging human brain

account of age. The ages of subjects in group 1 are
less than 73 and those in group 2 are larger than 73,
where the threshold of 73 is suggested by the authors
of Ref.[3]. The aim is to investigate the difference
between the two groups with gender as a covariate.
Six gene chips (accession number), CYPI11BI,
CYP11B2, D26561, CEACAM7, ESRRB,
MMP15, are treated as multiple endpoints. Figure 3

and

shows the box-plots of six gene chips after removing
the effect of gender. It is most likely that there exists
difference between the two groups. Furthermore, the
average values of three gene chips, CY11Bl1,

D26561, and CEACAM7, of group 1 are less than
those of group 2, but for the other gene chips,

CYP11B2, ESRRB and MMP15, the results are
contrary. We carry out the HT, RST, ARST, MAX,
and MIN2 to detect the difference between the two
groups and the p -values of the above five tests are
0.409 , 0.782 , 0.794 , 0.243, and 0.024,
respectively. Evidently, except for MIN2, the other
tests fail to detect the difference between the two

groups after removing effect of gender at the nominal

level of 0. 05.

4 Conclusion

Studies involving multiple outcomes are fairly
common in many research areas. Many procedures
including parametric and nonparametric ones have
been developed in the literature without considering
covariates. Actually in applications, the auxiliary
covariates may often be recorded on each subject. If
some covariates are associated with outcomes, the

precision may be improved by adjusting for this
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Fig.3 The box-plots of six gene chips after covariate adjustment in the aging human brain

relationship. In this work, we propose an MIN2 test

to compare the difference between two groups for

multiple

Through the simulation studies, the

outcomes with covariate adjustment.

MIN2 test

controls the type I error rate very well and has

superior power to other existing nonparametric tests.

[4]

[5]

[6]

References
Brunner E, Domhof S and Langer F. Nonparametric analysis
of longitudinal data in factorial Experiments[ M]. New York:
Wiley, 2002.
Li Z, Cao F, Zhang J, et al. Summation of absolute value test
for multiple outcome comparison with moderate effect [ J ].
Journal of Systems Science and Complexity, 2013, 26(3) .
462-469.
LuT, Pan Y, Kao S Y, et al. Gene regulation and DNA
damage in the ageing human brain[ J]. Nature, 2004, 429
(6994) . 883-891.
Hotelling H. The generalization of Student’ s ratio[ J]. The
Annals of Mathematical Statistics, 1931, 2(3) : 360-378.
O’ Brien P C. Procedures for comparing samples with multiple
endpoints| J |. Biometrics, 1984, 40(4): 1079-1087.
Huang P, Tilley B C, Woolson R F, et al. Adjusting O’
Brien’ s test to control type I error for the generalized
nonparametric Behrens-Fisher problem [ J ]. Biometrics,
2005, 61(2) . 532-539.
Liu A, Li Q, Liu C, et al. A rank-based test for comparison
of multidimensional outcomes [ J]. Journal of the American
Statistical Association, 2010, 105(490) : 578-587.
Grouin ] M, Day S, Lewis J. Adjustment for baseline
covariates: an introductory note[ J ]. Statistics in medicine,
2004, 23(5): 697-699.
Koch G G, Tangen C M, Jung J W, et al. Issues for

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

covariance analysis of dichotomous and ordered categorical
data from randomized clinical trials and non-parametric
strategies for addressing them [ J]. Statistics in medicine,
1998, 17(15/16) : 1863-1892.

Lesaffre E, Senn S. A note on non-parametric ANCOVA for
covariate adjustment in randomized clinical trials [ J ].
Statistics in medicine, 2003, 22(23) : 3 583-3 596.

Tsiatis A A, Davidian M, Zhang M,

et al. Covariate

adjustment  for two-sample treatment comparisons in
randomized clinical trials; A principled yet flexible approach
[J]. Statistics in medicine, 2008, 27(23) : 4 658-4 677.

Zhang M, Tsiatis A A, Davidian M. Improving efficiency of

inferences in randomized clinical trials

covariates| J]. Biometrics, 2008, 64(3): 707-715.

McArdle B H, Anderson M ]J. Fitting multivariate models to

using auxiliary

community data: a comment on distance-based redundancy
analysis[ J]. Ecology, 2001, 82(1): 290-297.

Li Q, Wacholder S, Hunter D J, et al. Genetic background
comparison using distance-based regression, with applications
in population stratification evaluation and adjustment [ J].
Genetic epidemiology, 2009, 33(5) . 432-441.

Pan W. Relationship between genomic distance-based
regression and kernel machine regression for multi-marker
association testing[ J]. Genetic epidemiology, 2011, 35(4) .
211-216.

Wessel J, Schork N J. Generalized genomic distance-based
regression methodology for multilocus association analysis[ J].
The American Journal of Human Genetics, 2006, 79 (5):
792-806.

Zapala M A, Schork N J. Multivariate regression analysis of
distance matrices for testing associations between gene
expression patterns and related variables[ J]. Proceedings of
the national academy of sciences, 2006, 103 (51) . 19 430-

19 435.



