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Abstract　 We
 

propose
 

a
 

class
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Poisson
 

integrators
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Padé
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linear
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Poisson
 

systems.
 

The
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orders
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the
 

schemes
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analyzed,
 

and
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properties
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investigated.
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are
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the
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results
 

and
 

illustrate
 

the
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behavior
 

of
 

the
 

proposed
 

methods.
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线性随机泊松系统基于 Padé 近似的随机泊松积分子

王鹏钧,王丽瑾

(中国科学院大学数学科学学院,
 

北京
 

100049)

摘　 要　 利用 Padé 近似,得到线性随机泊松系统的一类随机泊松积分子。 证明数值格式的均

方收敛阶,及其对泊松结构和 Casimir
 

函数的保持。 数值实验验证了数值格式的均方收敛阶及

保结构特性。
关键词　 随机泊松积分子;均方收敛阶;Padé 近似;泊松结构;Casimir 函数

　 　 Stochastic
 

Poisson
 

systems
 

are
 

defined
 

as
 

stochastic
 

systems
 

of
 

the
 

form[1]
 

dX(t)= B(X) ΔH0(X)dt + ∑
s

i =1

ΔHi(X) 􀳱 dW
 i(t)( ) ,

X( t0) = x, (1)
where

 

X( t),x∈RR n,B(X) = (bij(X)) ∈RRn×n
 

is
 

a
 

skew-symmetric
 

matrix-valued
 

function
 

satisfying

∑
n

l = 1

∂bij(X)
∂Xl

blk(X) +
∂b jk(X)

∂Xl
bli(X) +(

∂bki(X)
∂Xl

blj(X) ) = 0, (2)

for
 

all
 

i,j,k.
 

It
 

is
 

called
 

the
 

structural
 

matrix.
 

Hi
 

( i =
0,…,s)

 

are
 

smooth
 

scalar
 

functions,
 

and
 

(W1( t),
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…,Ws( t))
 

is
 

an
 

s-dimensional
 

standard
 

Wiener
 

process.
 

The
 

small
 

circle
 

“ 􀳱 ”
 

before
 

dWi
 

denotes
 

stochastic
 

differential
 

equations
 

of
 

Stratonovich
 

sense.
 

If
 

n = 2d
 

is
 

even,
 

and
 

B(X) ≡ J =
0 - Id
Id 0( ) ,

 

where
 

Id  is
 

the
 

d-dimensional
 

identity
 

matrix,
 

the
 

stochastic
 

Poisson
 

systems
 

( 1 )
 

degenerate
 

to
 

the
 

stochastic
 

Hamiltonian
 

systems[2-4]
 

of
 

even
 

dimensions
 

2d.
 

If
 

Hi ≡ 0
 

for
 

i = 1,…,s,
 

the
 

stochastic
 

Poisson
 

systems
 

( 1 )
 

degenerate
 

to
 

the
 

deterministic
 

Poisson
 

systems[5-7] ,
 

whose
 

long
 

history
 

goes
 

back
 

to
 

the
 

19th
 

century.
 

Their
 

stochastic
 

counterparts,
 

i. e. ,
 

the
 

stochastic
 

Poisson
 

systems
 

( 1 ),
 

however,
 

got
 

attention,
 

to
 

our
 

knowledge,
 

only
 

in
 

recent
 

years
 

(See
 

Refs.
 

[1,
 

8-
9]).

 

As
 

was
 

pointed
 

out
 

in
 

Refs. [ 5 - 7],
 

etc. ,
 

Poisson
 

systems
 

are
 

generalizations
 

of
 

Hamiltonian
 

systems
 

on
 

Poisson
 

manifolds,
 

and
 

find
 

applications
 

in
 

a
 

vast
 

variety
 

of
 

fields
 

such
 

as
 

rigid
 

bodies,
 

quantum
 

mechanics,
 

satellite
 

orbits,
 

magnetization
 

fluid
 

dynamics,
 

etc.
 

It
 

can
 

be
 

proved
 

that[1] ,
 

almost
 

surely,
 

the
 

phase
 

flow
 

ϕt:x |→ X( t)
 

of
 

the
 

stochastic
 

Poisson
 

systems
 

(1)
 

preserves
 

the
 

Poisson
 

structure
∂X( t)

∂x
B(x)∂X( t)

∂x

T

= B(X( t)),
 

∀t ≥ 0.

(3)
As

 

was
 

given
 

in
 

Refs. [1,5 - 7],
 

etc. ,
 

a
 

function
 

C(X)
 

is
 

called
 

a
 

Casimir
 

function
 

of
 

a
 

Poisson
 

system
 

with
 

structural
 

matrix
 

B(X),
 

if

ΔC(X) TB(X) ≡ 0,for
 

all
 

X. (4)
It

 

is
 

not
 

difficult
 

to
 

prove
 

that
 

( see
 

Ref. [1]),
 

the
 

Casimir
 

functions
 

C ( X )
 

are
 

invariants
 

of
 

the
 

stochastic
 

Poisson
 

systems
 

(1).
 

Numerical
 

methods
 

preserve
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions,
 

namely,
 

the
 

methods
 

{Xn}
 

satisfying
∂Xn+1

∂Xn
B(Xn)

∂Xn+1

∂Xn

T

= B(Xn+1),

C(Xn+1) = C(Xn),
 

∀n ≥ 0, (5)
are

 

called
 

Poisson
 

integrators[6] .
 

Poisson
 

integrators
 

for
 

deterministic
 

Poisson
 

systems
 

have
 

been
 

developed
 

from
 

various
 

points
 

of
 

view
 

( see
 

Refs.

[5-7]
 

and
 

references
 

therein).
 

Numerical
 

methods
 

for
 

stochastic
 

Poisson
 

systems,
 

however,
 

are
 

still
 

rarely
 

studied,
 

except
 

in
 

a
 

number
 

of
 

recent
 

papers
 

on
 

structure-preserving
 

methods
 

for
 

certain
 

special
 

stochastic
 

Poisson
 

systems
 

with
 

single
 

noise
 

or / and
 

even
 

dimensions
 

(e. g. ,
 

Refs. [8-9]),
 

as
 

well
 

as
 

our
 

paper
 

( Ref. [1])
 

on
 

numerical
 

methods
 

based
 

on
 

Darboux-Lie
 

theorem
 

for
 

general
 

stochastic
 

Poisson
 

systems.
 

In
 

this
 

paper,
 

we
 

consider
 

linear
 

stochastic
 

Poisson
 

systems
 

of
 

the
 

form

dX( t) = B ΔH0(X)dt + ∑
s

i = 1

ΔHi(X) 􀳱 dWi( t)( ) ,

X( t0) = x,
(6)

where
 

B ∈ RR n×n
 

is
 

a
 

constant
 

skew-symmetric
 

matrix,
 

and
 

Hi(X) = 1
2
XTCiX,

 

where
 

Ci,i = 0,…,

n,
 

are
 

constant
 

symmetric
 

matrices.
 

Then
 

( 6) can
 

be
 

rewritten
 

as

dX( t) = A0Xdt + ∑
s

i = 1
AiX 􀳱 dWi( t),

X( t0) = x,
(7)

where
Ai =BCi,i = 0,…,s.

The
 

exact
 

solution
 

of
 

(7)
 

is
 

of
 

the
 

form
X( t) =

exp (t - t0)A0 + ∑
s

i = 1
(Wi(t) - Wi(t0))Ai[ ]·X( t0) .

(8)
On

 

the
 

analogy
 

of
 

the
 

discussions
 

for
 

linear
 

Hamiltonian
 

systems
 

in
 

Refs.
 

[5,
 

10-11],
 

we
 

need
 

to
 

simulate
 

the
 

random
 

matrix
 

exponential
 

in
 

( 8)
 

appropriately
 

to
 

obtain
 

high
 

order
 

structure-
preserving

 

numerical
 

solvers.
 

As
 

mentioned
 

above,
 

as
 

B ≡ J =
0 - Id
Id 0( )

 

with
 

n = 2d,
 

the
 

linear
 

stochastic
 

Poisson
 

systems
 

(7)
 

degenerate
 

to
 

the
 

linear
 

stochastic
 

Hamiltonian
 

systems
 

(SHSs).
 

If,
 

further,
 

Ai = 0
 

for
 

i = 1,…,s,
 

( 7 )
 

will
 

degenerate
 

to
 

the
 

linear
 

deterministic
 

Hamiltonian
 

systems
 

(DHSs).
 

In
 

Ref. [10],
 

Feng
 

et
 

al.
 

simulated
 

the
 

matrix
 

exponential
 

exp[( tn+1 -

161
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tn)A0]
 

appearing
 

in
 

the
 

exact
 

solution
 

of
 

the
 

linear
 

DHSs,
 

by
 

appropriate
 

Padé
 

approximations,
 

and
 

obtained
 

high-order
 

symplectic
 

schemes.
 

This
 

approach
 

was
 

generalized
 

in
 

Ref. [ 11 ]
 

to
 

linear
 

SHSs,
 

where
 

random
 

matrix
 

exponentials
 

exp[( tn+1

- tn)A0 + ∑ s

i = 1
(Wi( tn+1) - Wi( tn))Ai]

 

with
 

Ai =

JCi
 

( i = 0,…,s)
 

were
 

approximated
 

by
 

suitable
 

Padé
 

approximations,
 

to
 

create
 

stochastic
 

symplectic
 

methods
 

of
 

high
 

root
 

mean-square
 

orders.
 

In
 

this
 

paper,
 

we
 

apply
 

Padé
 

approximations
 

to
 

the
 

random
 

matrix
 

exponential
 

in
 

(8),
 

to
 

produce
 

stochastic
 

Poisson
 

integrators
 

which
 

preserve
 

both
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions
 

of
 

the
 

original
 

linear
 

stochastic
 

Poisson
 

systems
 

( 7)
 

and
 

possess
 

high
 

root
 

mean-square
 

accuracy.
 

This
 

is
 

an
 

extension
 

of
 

the
 

above-mentioned
 

Padé
 

approximation
 

approaches
 

for
 

linear
 

Hamiltonian
 

systems[5,10-11]
 

to
 

linear
 

stochastic
 

Poisson
 

context.
 

The
 

contents
 

of
 

this
 

paper
 

are
 

organized
 

as
 

follows.
 

In
 

section
 

1,
 

we
 

construct
 

the
 

numerical
 

schemes
 

based
 

on
 

the
 

Padé
 

approximations,
 

namely,
 

the
 

( l,m) -schemes.
 

In
 

section
 

2
 

we
 

analyze
 

the
 

root
 

mean-square
 

convergence
 

orders
 

of
 

the
 

proposed
 

( l,m) -schemes.
 

In
 

section
 

3
 

we
 

prove
 

the
 

preservation
 

of
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions
 

by
 

the
 

(p,p) -schemes,
 

that
 

is,
 

the
 

( l,m) -schemes
 

when
 

l = m = p.
 

Numerical
 

experiments
 

are
 

performed
 

in
 

section
 

4
 

to
 

verify
 

the
 

theoretical
 

analysis
 

and
 

illustrate
 

the
 

numerical
 

behavior
 

of
 

the
 

proposed
 

schemes.
 

Section
 

5
 

is
 

a
 

brief
 

conclusion.
 

1　 Numerical
 

schemes
 

based
 

on
 

the
 

Padé
 

approximations
　 　 To

 

simulate
 

the
 

random
 

matrix
 

exponential
 

in
 

(8),
 

we
 

can
 

use
 

the
 

following
 

Padé
 

approximation
 

(see
 

e. g.
 

Refs. [10,12])
exp(M) ≈ P l,m(M) = D -1

l,m(M)Nl,m(M),(9)
where

 

M
 

represents
 

an
 

n × n
 

dimensional
 

square
 

matrix,
 

l,m
 

are
 

positive
 

integers,
 

and

Dl,m(M) = I + ∑
l

k = 1
dl,m
k ( - M) k,

Nl,m(M) = I + ∑
m

k = 1
nl,m
k Mk

with

dl,m
k = ( l + m-k)! l!

( l + m)! k! ( l-k)!
,

nl,m
k = ( l + m-k)! m!

( l + m)! k! (m-k)!
.

The
 

invertibility
 

of
 

the
 

matrix
 

Dl,m(M)
 

can
 

be
 

ensured
 

by
 

e. g.
 ∑ l

k = 1
dl,m
k ( - M) k < 1.

 

According
 

to
 

Ref. [ 5 ],
 

when
 

M
 

is
 

small
 

and
 

| M | → 0,
 

we
 

have
| exp(M) - P l,m(M) | = O( | M | l +m+1) .

(10)
　 　 Now

 

we
 

construct
 

the
 

following
 

numerical
 

discretization
 

for
 

the
 

linear
 

stochastic
 

Poisson
 

system
 

(7)

Xl,m
n+1 = I + ∑

l

k = 1
dl,m
k ( - Zn) k[ ]

-1
·

I + ∑
m

k = 1
nl,m
k (Zn) k[ ] Xl,m

n ,

Xl,m
0 = x, (11)

where

Zn = hA0 + ∑
s

i = 1
[Wi( tn+1) - Wi( tn)]Ai,

tn = t0 + nh.

Wi( tn+1) - Wi( tn)
 

can
 

be
 

simulated
 

by
 　 h ξ i

n,
 

and
 

ξ i
n

 ( i = 1,…,s )
 

are
 

N(0,1) -distributed
 

random
 

variables.
 

To
 

guarantee
 

the
 

invertibility
 

of
 

the
 

matrix
 

I + ∑
l

k = 1
dl,m
k ( - Zn) k

 

in
 

the
 

scheme
 

( 11),
 

we
 

can
 

require
 

| ∑
l

k = 1
dl,m
k ( - Zn) k | < 1,

 

which
 

can
 

be
 

realized
 

by
 

choosing
 

sufficiently
 

small
 

h,
 

and
 

truncating
 

the
 

random
 

variables
 

ξ i
n

 as
 

follows[3]

ζin,h =

ξin, | ξin | ≤ Ah,

Ah, ξin > Ah,
- Ah, ξin < - Ah,

ì

î

í

ï
ï

ï
ï

(12)

Ah = 2c | lnh | ,c ≥ 1
 

sufficiently
 

large.
 

The
 

truncation
 

was
 

proposed
 

in
 

Ref. [3]
 

for
 

constructing
 

implicit
 

stochastic
 

methods,
 

where
 

the
 

unboundedness
 

of
 

ΔWi
n = Wi( tn+1) - Wi( tn)

 

may
 

cause
 

zero
 

denominators
 

and
 

thus
 

collapse
 

of
 

the
 

methods.
 

It
 

was
 

shown
 

in
 

Ref. [ 3] that,
 

the
 

root
 

mean- square
 

convergence
 

order
 

ν
 

of
 

the
 

proposed
 

methods
 

will
 

not
 

be
 

affected
 

by
 

such
 

truncations
 

if
 

c
 

261



第 2 期 WANG
 

Pengjun,
 

WANG
 

Lijin:Stochastic
 

Poisson
 

integrators
 

based
 

on
 

Padé
 

approximations……

is
 

sufficiently
 

large
 

such
 

that
 

c≥2ν.
After

 

the
 

truncation
 

( 12 ),
 

we
 

rewrite
 

the
 

scheme
 

(11)
 

in
 

the
 

following
 

form

Xl,m
n+1 = - ∑

l

k = 1
dl,m
k ( -Zn) k[ ] Xl,m

n+1 +

I + ∑
m

k = 1
nl,m
k Zn

k[ ] Xl,m
n ,

Xl,m
0 = x, (13)

where

Zn = hA0 + ∑
s

i = 1

　 h ζin,hAi . (14)

We
 

can
 

use
 

fixed-point
 

iterations
 

to
 

get
 

Xl,m
n+1

 in
 

(13),
 

where
 

the
 

condition
 

| ∑
l

k = 1
dl,m
k ( -Zn) k | < 1

 

guaranteed
 

by
 

the
 

truncation
 

( 12 )
 

as
 

well
 

as
 

sufficiently
 

small
 

h
 

satisfying
　 h | lnh | < min

1
　 2c

, 1
　 2c·max

k
{dl,m

k }·Ql
{ } ,

(15)

with
 

Ql =∑ l

k = 1
(∑ s

i = 0
| Ai | ) k,

 

can
 

as
 

well
 

ensure
 

the
 

convergence
 

of
 

the
 

iterations.
 

In
 

the
 

following
 

we
 

call
 

the
 

scheme
 

(13)
 

the
 

( l,m) -scheme.
 

2 　 Root
 

mean-square
 

convergence
 

orders
　 　 Proposition

 

2. 1[13] 　 Suppose
 

the
 

one-step
 

approximation
 

Xt,x( t + h)
 

has
 

order
 

of
 

accuracy
 

p1
 for

 

the
 

mathematical
 

expectation
 

of
 

the
 

deviation
 

and
 

order
 

of
 

accuracy
 

p2
 for

 

the
 

mean-square
 

deviation;
 

more
 

precisely,
 

for
 

arbitrary
 

t0 ≤ t≤ t0 + T - h,x∈
RR n,

 

the
 

following
 

inequalities
 

hold:

| E(Xt,x( t + h) -Xt,x( t + h)) |

≤ K(1 +| x | 2) 1 / 2hp1,

[E | Xt,x( t + h) -Xt,x( t + h) | 2] 1 / 2

≤ K(1 +| x | 2) 1 / 2hp2 . (16)
Also,

 

let

p2 ≥ 1
2

,
 

p1 ≥ p2 + 1
2
. (17)

Then
 

for
 

any
 

N
 

and
 

k = 0,1,…,N
 

the
 

following
 

inequality
 

holds:

[E | Xt0,X0
( tk) -Xt0,X0

( tk)) | 2] 1 / 2

≤ K(1 + E | X0 | 2) 1 / 2hp2-1 / 2, (18)

i. e.
 

the
 

order
 

of
 

accuracy
 

of
 

the
 

method
 

constructed
 

using
 

the
 

one-step
 

approximation
 

Xt,x( t + h)
 

is
 

p =

p2 - 1
2
.

 

Proposition
 

2. 2[13] 　 Let
 

the
 

one-step
 

approximation
 

Xt,x( t + h)
 

satisfy
 

the
 

conditions
 

of
 

Theorem
 

2. 1.
 

Suppose
 

that
 

X􀮨t,x( t + h)
 

is
 

such
 

that

| E(Xt,x( t + h) -X􀮨t,x( t + h)) | = O(hp1),

[E | Xt,x( t + h) -X􀮨t,x( t + h) | 2] 1 / 2 = O(hp2)
(19)

with
 

the
 

same
 

hp1
 

and
 

hp2 .
 

Then
 

the
 

method
 

based
 

on
 

the
 

one-step
 

approximation
 

X􀮨t,x( t + h)
 

has
 

the
 

same
 

root
 

mean-square
 

convergence
 

order
 

as
 

the
 

method
 

based
 

on
 

Xt,x( t + h),
 

i. e. , its
 

root-mean-square
 

convergence
 

order
 

is
 

p = p2 - 1
2
.

 

Using
 

the
 

above
 

fundamental
 

convergence
 

theorem
 

and
 

its
 

corollary,
 

namely
 

the
 

Propositions
 

2. 1
 

and
 

2. 2,
 

we
 

can
 

prove
 

the
 

following
 

convergence
 

theorem
 

for
 

the
 

scheme
 

(13).
Theorem

 

2. 1 　 If
 

l
 

and
 

m
 

have
 

the
 

same
 

parity,
 

and
 

the
 

truncation
 

parameter
 

c
 

in
 

( 12 )
 

satisfies
 

c ≥ l + m,
 

then
 

the
 

root
 

mean-square
 

convergence
 

order
 

of
 

the
 

( l,m) -scheme
 

( 13)
 

is
 

l + m
2

.
 

Proof　 Consider
 

the
 

following
 

scheme:

Xl,m
n+1 =Xl,m

n + ∑
l +m

j = 1

1
j!

Zn
jé

ë
êê

ù

û
úú X

l,m
n ,

Xl,m
0 = x, (20)

which
 

is
 

based
 

on
 

the
 

one-step
 

approximation

Xl,m( t + h;t,x) = x +

∑
l +m

j = 1

1
j!

(hA0 + ∑
s

i = 1

　 h ζihAi) jx, (21)

where
 

ζ i
h

 is
 

the
 

truncation
 

of
 

the
 

N(0,1)
 

random
 

variable
 

ξ i
 

that
 

makes
 

Wi( t + h) - Wi( t) = 　 h ξ i .
 

Using
 

Taylor
 

expansion
 

of
 

the
 

exponential,
 

we
 

have
 

the
 

exact
 

solution

X(t + h;t,x) = x + ∑
+∞

j = 1

1
j!

(hA0 + ∑
s

i = 1

　 hξiAi) jx.

(22)

361
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Then
 

we
 

can
 

derive

| E(X( t + h;t,x) -Xl,m( t + h;t,x)) |

≤ | E[∑
l +m

j = 1

1
j!

(hA0 + ∑
s

i = 1
h ξ iAi) j -

∑
l +m

j = 1

1
j!

(hA0 + ∑
s

i = 1
h ζ i

hAi) j +

∑
+∞

j = l +m+1

1
j!

(hA0 + ∑
s

i = 1

　 h ξ iAi) j] |·| x |

≤ (1 +| x | 2)
1
2 (L1 + L2 + L3), (23)

where

L1 = ∑
l +m

j = 1

1
j!

E[(hA0 + ∑
s

i = 1
hξ iAi)j - (hA0 + ∑

s

i = 1
hζ i

hAi)j] ,

L2 = 1
(l + m + 1)!

E(hA0 + ∑
s

i = 1
hξ iAi)(l+m+1) ,

L3 = ∑
+∞

j = l +m+2

1
j!

E(hA0 + ∑
s

i = 1
h ξ iAi) j .

Due
 

to
 

the
 

fact
 

that,
 

for
 

square
 

matrices
 

Mi
 

( i = 0,
…,s),

 

and
 

any
 

j ≥ 1
 

( j ∈ ZZ ),

∑
s

i = 0
Mi( )

j = ∑
σ1,…,σ j∈{0,1,…,s}

Mσ1…Mσ j,

and
 

h < h
1
2

 

for
 

0 < h < 1,
 

by
 

denoting
 

ξ 0 = 1,ζ 0
h =

1,
 

we
 

have

L1 ≤ ∑
l +m

j = 1

1
j!

h
j
2 E ∑

σ1,…,σ j∈{0,…,s}

Aσ1…Aσ j(ξσ1…ξσ j - ζσ1
h …ζσ j

h )

≤ ∑
l +m

j = 1

1
j!

h
j
2 max

0≤i≤s
| Ai | j ∑

σ1,…,σ j∈{0,…,s}
| E(ξσ1…ξσ j -

ζσ1
h …ζσ j

h ) |

= ∑
l +m

j = 1

1
j!

h
j
2 max

0≤i≤s
| Ai | j ∑

0 < ρ1+…+ρ s≤j

| E[(ξ 1) ρ1…(ξ s) ρ s - (ζ 1
h)

ρ1…(ζ s
h)

ρ s] | ,
where

 

ρ i ≥ 0,
 

ρ i ∈ ZZ
 

( i = 1,…,s) .
 

Obviously,
 

L2 ≤O(h
l+m+1

2 ),
 

where
 

the
 

principal
 

term,
 

i. e.
 

the
 

term
 

with
 

lowest
 

order,
 

denoted
 

by
 

P2,
 

satisfies

P2 ≤
K0

( l + m + 1)!
h

l+m+1
2

| E ∑
σ1,…,σ l+m+1∈{1,…,s}

Aσ1…Aσ l+m+1ξσ1…ξσ l+m+1 |

　 ≤
K0

( l + m + 1)!
h

l+m+1
2 max

1≤i≤s
| Ai | l +m+1

　 ∑
σ1,…,σ l+m+1∈{1,…,s}

| E(ξσ1…ξσ l+m+1) |

=
K0

( l + m + 1)!
h

l+m+1
2 max

1≤i≤s
| Ai | l +m+1

　 ∑
ρ1+…+ρ s = l+m+1

| E[(ξ 1) ρ1…(ξ s) ρ s] | ,

where
 

K0
 is

 

a
 

positive
 

constant
 

independent
 

of
 

h.
 

Then,
 

if
 

l + m + 1
 

is
 

odd,
 

due
 

to
 

independence
 

of
 

ξ 1,…,ξ s,
 

we
 

have
 

P2 = 0
 

which
 

implies
 

L2 ≤

O(h
l+m+2

2 ) .
 

As
 

l + m + 1
 

is
 

even,
 

L2 ≤ O(h
l+m+1

2 ) .
 

According
 

to
 

the
 

distributions
 

of
 

ξ i
 

and
 

ζ i
h,

 

and
 

let
 

t = x - Ah,
 

we
 

have
 

for
 

any
 

ρ ≥ 1
 

(ρ ∈ ZZ ),
| E[(ξ i) ρ - (ζ i

h) ρ] |

= 2 ∫
+∞

Ah

(xρ - Aρ
h)exp - x2

2( ) dx

≤ 2 ∑
ρ -1

u = 0
Cu

ρAu
hexp -

A2
h

2( ) ∫
+∞

0

tρ-uexp - t2

2( ) dt

≤ 2K1 ∑
ρ -1

u = 0
Au

hexp -
A2

h

2( ) , (24)

where

K1 = max
0≤u≤ρ-1

Cu
ρρ! π / 2 ,

and
 

the
 

last
 

inequality
 

is
 

due
 

to

∫
+∞

0

tνexp - t2

2( ) dt

=
(ν - 1)(ν - 3)…4 × 2, ν

 

is
 

odd,

(ν - 1)(ν - 3)…5 × 3 π / 2 , ν
 

is
 

even,{
for

 

ν = ρ - u
 

which
 

satisfies
 

1 ≤ ν ≤ ρ.

Since
 

Ah = 　 2c | lnh | ,
 

c ≥ l + m,
 

we
 

have
 

exp( -
A2

h

2
) ≤ hc,

 

A2
h ≤ 2c

h
,

 

which
 

implies

| E[(ξi) ρ - (ζih) ρ] | ≤ 2K1K2h
1-ρ

2 +l+m (25)
for

 

i = 1,…,s.
 

Note
 

that
 

K1,K2
 are

 

positive
 

constants
 

independent
 

of
 

h.
 

On
 

the
 

other
 

hand,

| E[(ξ 1) ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s -

　 (ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ζ s-1
h ) ρ s-1(ζ s

h)
ρ s] |

≤ | E[(ξ 1) ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s -

(ζ 1
h)

ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s] | +

| E[(ζ 1
h)

ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s -

(ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ξ s-1) ρ s-1(ξ s) ρ s] | +
… +
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| E[(ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ζ s-1
h ) ρ s-1(ξ s) ρ s -

(ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ζ s-1
h ) ρ s-1(ζ s

h)
ρ s] |

= | E[(ξ 1) ρ1 - (ζ 1
h)

ρ1] |·

| E[(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s] | +

| E[(ξ 2) ρ2 - (ζ 2
h)

ρ2] |·

| E[(ζ 1
h)

ρ1…(ξ s-1) ρ s-1(ξ s) ρ s] | +
… +

| E[(ξ s) ρ s - (ζ s
h)

ρ s] |·

| E[(ζ 1
h)

ρ1…(ζ s-1
h ) ρ s-1] | . (26)

From
 

(25)
 

we
 

know
 

that

| E[(ξi) ρ - (ζih) ρ] | = O(h
1-ρ

2 +l+m),
which,

 

together
 

with
 

(26),
 

implies
 

that

L1 = O(hl +m+ 1
2 ) . (27)

We
 

have
 

analyzed
 

the
 

order
 

of
 

L2
 above.

 

In
 

addition,
 

L3 ≤ O(h
l+m+2

2 )
 

obviously.
 

Then
 

we
 

obtain

| E(X( t + h;t,x) -Xl,m( t + h;t,x)) |

≤ K(1 +| x | 2) 1 / 2h「 l+m+1
2 ⌉ , (28)

where
 

K
 

is
 

a
 

positive
 

constant
 

independent
 

of
 

h,
 

and
 

「 l
+ m + 1

2
⌉

 

means
 

the
 

smallest
 

integer
 

larger
 

than
 

or
 

equal
 

to
 l + m + 1

2
.

 

Therefore,
 

when
 

l
 

and
 

m
 

have
 

the
 

same
 

parity,
 

namely
 

l + m + 1
 

is
 

odd,
 

the
 

order
 

of
 

(28)
 

would
 

be
 l + m

2
+ 1.

 

Otherwise,
 

it
 

would
 

be
 

l + m + 1
2

.
 

Now
 

we
 

estimate
 

the
 

second
 

moment
 

of
 

the
 

error.
 

Applying
 

the
 

inequality

E | ∑
k

i = 1
ai | 2 ≤ k(∑

k

i = 1
E | ai | 2) (29)

we
 

have

E | X( t + h;t,x) -Xl,m( t + h;t,x) | 2

≤ E | ∑
l +m

j = 1

1
j!

(hA0 + ∑
s

i = 1
h ξ iAi) j -

∑
l +m

j = 1

1
j!

(hA0 + ∑
s

i = 1
h ζ i

hAi) j +

∑
+∞

j = l +m+1

1
j!

(hA0 + ∑
s

i = 1
h ξ iAi) j | 2·| x | 2

≤ 3 | x | 2(L4 + L5 + L6), (30)

where

L4 = E ∑
l +m

j = 1

1
j!

[(hA0 + ∑
s

i = 1
h ξ iAi) j -

(hA0 + ∑
s

i = 1
h ζ i

hAi) j]
2

,

L5 = E 1
( l + m + 1)!

(hA0 + ∑
s

i = 1
h ξ iAi) ( l +m+1)

2

,

L6 = E ∑
+∞

j = l +m+2

1
j!

(hA0 + ∑
s

i = 1
h ξ iAi) j

2

.

Again
 

setting
 

ξ 0 = 1,ζ 0
h = 1,

 

and
 

applying
 

(29)
 

we
 

have

L4 ≤ ( l + m)∑
l +m

j = 1

1
( j! ) 2

E (hA0 + ∑
s

i = 1
hξ iAi) j - (hA0 + ∑

s

i = 1
hζ i

hAi) j 2

≤ ( l + m)∑
l +m

j = 1

1
( j! ) 2h

jE | ∑
σ1,…,σ j∈{0,…,s}

Aσ1…Aσ j(ξσ1…ξσ j - ζσ1
h …ζσ j

h ) | 2

≤ ( l + m)∑
l +m

j = 1

( s + 1) j

( j! ) 2 max
0≤i≤s

| Ai | 2jh j

∑
σ1,…,σ j∈{0,…,s}

E | ξσ1…ξσ j - ζσ1
h …ζσ j

h | 2

　 = ( l + m)∑
l +m

j = 1

( s + 1) j

( j! ) 2 max
0≤i≤s

| Ai | 2jh j ∑
0 < ρ1+…+ρ s≤j

E | (ξ 1) ρ1…(ξ s) ρ s - (ζ 1
h)

ρ1…(ζ s
h)

ρ s | 2 .
Meanwhile,

 

it
 

is
 

easy
 

to
 

see
 

that
 

L5 ≤ O(hl +m+1),
 

the
 

principal
 

term
 

of
 

which,
 

denoted
 

by
 

P5,
 

satisfies

P5 ≤ K3hl +m+1E | ∑
σ1,…,σ l+m+1∈{1,…,s}

Aσ1…Aσ l+m+1ξσ1…ξσ l+m+1 | 2

≤ K3hl +m+1sl +m+1 max
1≤i≤s

| Ai | 2( l +m+1)

∑
σ1,…,σ l+m+1∈{1,…,s}

E | ξσ1…ξσ l+m+1 | 2

　 = K3hl +m+1sl +m+1 max
1≤i≤s

| Ai | 2( l +m+1)

∑
ρ1+…+ρ s = l+m+1

E | (ξ 1) ρ1…(ξ s) ρ s | 2

　 = O(hl +m+1),
where

 

K3
 is

 

a
 

positive
 

constant
 

independent
 

of
 

h.
 

Thus
 

L5≤O(hl+m+1),
 

and
 

obviously,
 

L6≤O(hl+m+2) .
Similar

 

to
 

the
 

analysis
 

for
 

(25),
 

let
 

t = x - Ah,
 

we
 

have
 

for
 

any
 

ρ ≥ 1
 

(ρ ∈ ZZ )
 

that
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E | (ξ i) ρ - (ζ i
h) ρ | 2

= 2∫+∞

Ah
(xρ - Aρ

h) 2exp - x2

2( ) dx

= 2∫+∞

0
∑
ρ -1

u = 0
Cu

ρAu
h tρ-u( )

2
exp -

( t + Ah) 2

2( ) dt

≤ 2∫+∞

0
ρ ∑

ρ -1

u = 0
(Cu

ρ) 2A2u
h t2ρ -2u( ) exp -

( t + Ah) 2

2( ) dt

≤ 2ρ∑
ρ -1

u = 0
(Cu

ρ) 2A2u
h exp -

A2
h

2( )

∫+∞

0
t2ρ -2uexp - t2

2( ) dt

≤ 2ρK4∑
ρ -1

u = 0
(Cu

ρ) 2A2
 

u
h exp -

A2
h

2( )
≤ 2ρK5h1-ρ +l+m, (31)
for

 

i = 1,…,s,
 

where
 

K4,K5
 are

 

positive
 

constants
 

independent
 

of
 

h.
For

 

L4,
 

we
 

have
1
s
E | (ξ 1) ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s -

　 (ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ζ s-1
h ) ρ s-1(ζ s

h)
ρ s | 2

≤ E | (ξ 1) ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s -

(ζ 1
h)

ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s | 2 +

E | (ζ 1
h)

ρ1(ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s -

(ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ξ s-1) ρ s-1(ξ s) ρ s | 2 +
… +

E | (ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ζ s-1
h ) ρ s-1(ξ s) ρ s -

(ζ 1
h)

ρ1(ζ 2
h)

ρ2…(ζ s-1
h ) ρ s-1(ζ s

h)
ρ s | 2

= E | (ξ 1) ρ1 - (ζ 1
h)

ρ1 | 2·

E | (ξ 2) ρ2…(ξ s-1) ρ s-1(ξ s) ρ s | 2 +

E | (ξ 2) ρ2 - (ζ 2
h)

ρ2 | 2·

E | (ζ 1
h)

ρ1…(ξ s-1) ρ s-1(ξ s) ρ s | 2 +
… +

E | (ξ s) ρ s - (ζ s
h)

ρ s | 2·

E | (ζ 1
h)

ρ1…(ζ s-1
h ) ρ s-1 | 2 . (32)

From
 

(31)
 

we
 

know
 

that
 

for
 

i ∈ {1,…,s},
E | (ξ i) ρ - (ζ i

h) ρ | 2 = O(h1-ρ +l+m),
which,

 

together
 

with
 

(32),
 

implies
 

that
L4 ≤ O(hl +m+1) . (33)

Considering
 

also
 

the
 

orders
 

of
 

L5
 and

 

L6
 discussed

 

above,
 

we
 

obtain

[E | X( t + h;t,x) -Xl,m( t + h;t,x) | 2] 1 / 2

≤ L(1 +| x | 2) 1 / 2h
l+m+1

2 , (34)
where

 

L
 

is
 

a
 

positive
 

constant
 

independent
 

of
 

h.
 

Applying
 

Proposition
 

2. 1,
 

for
 

the
 

case
 

that
 

l
 

and
 

m
 

have
 

the
 

same
 

parity,
 

we
 

have
 

p1 =
l + m

2
+ 1,

p2 = l + m + 1
2

.
 

So
 

the
 

root
 

mean-square
 

convergence
 

order
 

of
 

the
 

numerical
 

scheme
 

(20)
 

is
 

l + m
2

.
 

Next
 

we
 

consider
 

the
 

difference:

　 Xl,m( t + h;t,x) -Xl,m( t + h;t,x)

　 = (Xl,m( t + h;t,x) - exp(Z)x) -

(Xl,m( t + h;t,x) - exp(Z)x)

　 = ∑
+∞

j = 2p+1
cjZ jx, (35)

where

Z = hA0 + ∑
s

i = 1

　 h ζihAi, (36)

cj,j ≥ l + m + 1, are
 

constants.
 

Then
 

we
 

obtain

| E(Xl,m( t + h;t,x) -Xl,m( t + h;t,x)) |

≤K
-

1 E ∑
+∞

j = l +m+1
(hA0 + ∑

s

i = 1

　 h ζ i
hAi) j

= O(h
l+m

2 +1),

(37)

and

E | Xl,m( t + h;t,x) -X l,m( t + h;t,x) | 2

≤K
-

2E ∑
+∞

j = l +m+1
(hA0 + ∑

s

i = 1

　 h ζ i
hAi) j 2

= O(hl +m+1), (38)

where
 

K
-

1
 and

 

K
-

2
 are

 

positive
 

constants
 

independent
 

of
 

h.
 

Applying
 

Proposition
 

2. 2
 

we
 

complete
 

the
 

proof
 

of
 

Theorem
 

2. 1. □

3 　 Preservation
 

of
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions

　 　 For
 

the
 

Zn
 in

 

( 14),
 

it
 

is
 

easy
 

to
 

verify
 

the
 

following
 

propositions:
 

Proposition
 

3. 1　 For
 

any
 

n ≥ 0,
 

n ∈ ZZ ,

Zn
2nB = B(Zn

2n) T,

Zn
2n+1B = - B(Zn

2n+1) T .
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　 　 Proposition
 

3. 2 　 Suppose
 

f(x)
 

is
 

an
 

even
 

polynomial
 

and
 

g(x)
 

is
 

an
 

odd
 

polynomial,
 

then
 

we
 

have

f(Zn

—
)B = Bf(Zn

—
T),g(Zn

—
)B = - Bg(Zn

—
T),

( f(Zn

—
) - g(Zn

—
))( f(Zn

—
) + g(Zn

—
))B

= ( f(Zn

—
) + g(Zn

—
))( f(Zn

—
) - g(Zn

—
))B.

　 　 Now
 

we
 

prove
 

the
 

following
 

theorem:
 

Theorem
 

3. 1 　 The
 

(p,p) -schemes
 

( 13 )
 

( l= m = p)
 

preserve
 

the
 

Poisson
 

structure
 

of
 

the
 

original
 

linear
 

stochastic
 

Poisson
 

system
 

(7).
 

Proof　 Regarding
 

the
 

equivalent
 

form
 

(11)
 

of
 

(13),
 

we
 

need
 

to
 

verify
∂Xp,p

n+1

∂Xp,p
n

B(
∂Xp,p

n+1

∂Xp,p
n

) T

= D -1
p,p(Zn

—
)Np,p(Zn

—
)BNp,p(Zn

—
T)D -1

p,p(Zn

—
T)

= B, (39)
which

 

is
 

equivalent
 

to

Np,p(Zn

—
)BNp,p(Zn

—
T) = Dp,p(Zn

—
)BDp,p(Zn

—
T) .
(40)

Let

Np,p(Zn

—
) = f(Zn

—
) + g(Zn

—
),

Dp,p(Zn

—
) = f(Zn

—
) - g(Zn

—
),

where
 

f(x)
 

is
 

an
 

even
 

polynomial
 

and
 

g(x)
 

is
 

an
 

odd
 

polynomial.
 

Then
 

it
 

follows

Np,p(Zn

—
)BNp,p(Zn

—
T)

　 = ( f(Zn

—
) + g(Zn

—
))B( f(Zn

—
T) + g(Zn

—
T))

= ( f(Zn

—
) + g(Zn

—
))( f(Zn

—
) - g(Zn

—
))B

= ( f(Zn

—
) - g(Zn

—
))( f(Zn

—
) + g(Zn

—
))B

= ( f(Zn

—
) - g(Zn

—
))B( f(Zn

—
T) - g(Zn

—
T))

= Dp,p(Zn

—
)BDp,p(Zn

—
T) . □

　 　 Next
 

we
 

prove
 

the
 

Casimir-preservation
 

by
 

the
 

(p,p) -scheme
 

(13).
 

Theorem
 

3. 2 　 The
 

(p,p) -schemes
 

( 13 )
 

( l= m = p)
 

preserve
 

the
 

Casimir
 

functions
 

of
 

the
 

linear
 

stochastic
 

Poisson
 

system
 

(7).
 

Proof　 From
 

(13)
 

we
 

know
Xp,p

n+1 - Xp,p
n = BΘp,p

n ,
where

Θp,p
n = ∑

p

k = 1
np,p
k Yn(BYn) k-1( ) Xp,p

n -

∑
p

k = 1
dp,p
k ( - 1) kYn(BYn) k-1( ) Xp,p

n+1,

with
 

Yn = hC0 + ∑
s

i = 1

　 h ζ i
n,hCi .

 

By
 

the
 

fundamental
 

theorem
 

of
 

calculus,
 

we
 

have,
 

for
 

any
 

Casimir
 

function
 

C(X)
 

of
 

the
 

linear
 

stochastic
 

Poisson
 

system
 

(7),
C(Xp,p

n+1) - C(Xp,p
n )

= ∫
1

0

ΔC(Xp,p
n + τ(Xp,p

n+1 - Xp,p
n )) T(Xp,p

n+1 - Xp,p
n )dτ

= ∫
1

0

ΔC(Xp,p
n + τ(Xp,p

n+1 - Xp,p
n )) TBΘp,p

n dτ

= 0,
where

 

the
 

last
 

step
 

is
 

due
 

to
 

the
 

fact
 

that
 

C(X)
 

is
 

a
 

Casimir
 

function
 

such
 

that
 ΔC(X) TB ≡ 0,

 

for
 

all
 

X. □

4　 Numerical
 

experiments
In

 

this
 

section,
 

we
 

illustrate
 

the
 

performance
 

of
 

the
 

(p,p) -schemes
 

(13)
 

( l =m = p)
 

via
 

numerical
 

tests.
 

We
 

consider
 

the
 

following
 

linear
 

stochastic
 

Poisson
 

system
dX( t) =

　
0 1 - 1
- 1 0 3
1 - 3 0

( )·
2 1 1
1 1 0
1 0 1

( ) Xdt
é

ë

ê
ê
êê

+

　 1
4

11 4 4
4 2 1
4 1 2

( ) X 􀳱 dW( t)
ù

û

ú
ú
úú

,

X( t0) = x. (41)
It

 

can
 

be
 

proved
 

that,
 

the
 

function
 

C(X) = 3X(1) +
X(2) + X(3)

 

is
 

a
 

Casimir
 

function
 

of
 

the
 

system
 

(41).
 

Moreover,
 

the
 

Hamiltonian
 

functions
H1(X) = (X(1) + X(2) ) 2 + (X(1) + X(3) ) 2,

H2(X) = 11(X(1) ) 2 + 2(X(2) ) 2 + 2(X(3) ) 2 +
8X(1)X(2) + 2X(2)X(3) + 8X(3)X(1)

are
 

invariants
 

of
 

the
 

system
 

( 41),
 

since
 

it
 

holds
 

( ΔH1) TB ΔH2 = 0,
 

where
 

B =
0 1 - 1
- 1 0 3
1 - 3 0

( ) .  

The
 

stochastic
 

poisson
 

integrators,
 

i. e. ,
 

the
 

(p,p) -schemes
 

(13)
 

(p= 1,2,3)
 

for
 

(41)
 

read

X1,1
n+1 = I3 + 1

2
Zn

—

( ) X1,1
n + 1

2
Zn

—
X1,1

n+1, (42)
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X2,2
n+1 = I3 + 1

2
Zn

—
+ 1

12
(Zn

—
) 2( ) X2,2

n +

1
2
Zn

—
- 1

12
(Zn

—
) 2( ) X2,2

n+1, (43)

X3,3
n+1 = I3 + 1

2
Zn

—
+ 1

10
(Zn

—
) 2 + 1

120
(Zn

—
) 3( ) X3,3

n +

1
2
Zn

—
- 1

10
(Zn

—
) 2 + 1

120
(Zn

—
) 3( ) X3,3

n+1, (44)

where

A0 =
0 1 - 1
- 1 0 3
1 - 3 0

( )
2 1 1
1 1 0
1 0 1

( ) ,

A1 = 1
4

0 1 - 1
- 1 0 3
1 - 3 0

( )
11 4 4
4 2 1
4 1 2

( ) ,

Zn = hA0 + h ζ1
n,hA1,

with
 

Ah = 　 4p | lnh | ,
 

p = 1,2,3.
 

Figure
 

1
 

illustrates
 

the
 

root
 

mean-square
 

orders
 

of
 

the
 

(p,p) -schemes
 

( 42),
 

( 43 )
 

and
 

( 44 ),
 

which
 

are
 

1,
 

2
 

and
 

3,
 

respectively,
 

coinciding
 

with
 

the
 

theoretical
 

result
 

in
 

Theorem
 

2. 1.
 

Here
 

we
 

take
 

T = 10,
 

initial
 

value
 

x = [1,0, - 1],
 

and
 

time
 

steps
 

h = [ 0. 005, 0. 01, 0. 02, 0. 025, 0. 05 ].
 

The
 

expectation
 

is
 

approximated
 

by
 

taking
 

average
 

over
 

1
 

000
 

sample
 

paths.

Fig. 1　 Root
 

mean-square
 

convergence
 

orders
of

 

(42),
 

(43),
 

and
 

(44)

Figure
 

2
 

compares
 

the
 

numerical
 

sample
 

paths
 

of
 

X(1)( t),
 

X(2)( t)
 

and
 

X(3)( t)
 

arising
 

from
 

the
 

(1,1)-scheme
 

(42)
 

and
 

the
 

implicit
 

Euler
 

method
 

with
 

the
 

reference
 

solution.
 

As
 

can
 

be
 

seen,
 

as
 

time
 

step
 

h = 0. 01,
 

both
 

numerical
 

methods
 

can
 

create
 

good
 

path
 

approximations.
 

As
 

h = 0. 1,
 

however,
 

the
 

implicit
 

Euler
 

fails
 

to
 

simulate
 

the
 

paths
 

in
 

acceptable
 

accuracy,
 

while
 

our
 

(1,1)-scheme
 

(42)
 

still
 

behaves
 

fairly
 

well.

Fig. 2　 Sample
 

paths
 

produced
 

by
 

(42)
 

and
 

the
 

implicit
Euler

 

method
 

for
 

h=0. 1
 

(a)
 

and
 

h=0. 01(b)

Figure
 

3
 

displays
 

the
 

computed
 

Casimir
 

function
 

C(Xn) = 3X(1)
n + X(2)

n + X(3)
n

 arising
 

from
 

the
 

( 1, 1 )-scheme
 

( 42 )
 

and
 

the
 

implicit
 

Euler
 

method
 

with
 

initial
 

x = [1,1,1],
 

from
 

the
 

(2,2)-
scheme

 

(43)
 

with
 

x = [1,1,2],
 

and
 

from
 

the
 

(3,
3)-scheme

 

(44)
 

with
 

x = [1,1,3] .
 

We
 

take
 

T =
10,h = 0. 1.

 

Obviously,
 

all
 

the
 

methods
 

can
 

preserve
 

the
 

Casimir
 

function.
Figure

 

4
 

observes
 

the
 

evolution
 

of
 

the
 

Hamiltonians
 

H1(X( t))
 

and
 

H2(X( t))
 

over
 

the
 

time
 

interval
 

t ∈ [0,10],
 

produced
 

by
 

the
 

(1,1)-
scheme

 

(42)
 

and
 

the
 

implicit
 

Euler
 

with
 

initial
 

x =
[1,1,1],

 

by
 

the
 

(2,2)-scheme
 

(43)
 

with
 

initial
 

x = [1,1,2]
 

and
 

by
 

the
 

(3,3)-scheme
 

(44)
 

with
 

initial
 

x = [1,1,3] .
 

It
 

is
 

clear
 

that,
 

the
 

implicit
 

Euler
 

can
 

not
 

preserve
 

the
 

Hamiltonians,
 

while
 

our
 

(p,p) -schemes
 

( p = 1,2,3)
 

can.
 

Here
 

we
 

take
 

h = 0. 1.
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Fig. 3　 Preservation
 

of
 

Casimir
 

function
 

by
 

(42),
(43),

 

(44),and
 

the
 

implicit
 

Euler
 

method

　 　 Figure
 

5
 

demonstrates
 

the
 

evolution
 

of
 

the
 

relative
 

error
 

∂Xn+1

∂Xn
B(

∂Xn+1

∂Xn
) T - B

B
,

 

arising
 

from
 

the
 

(p,p) -schemes
 

( 42), ( 43), ( 44),
 

and
 

the
 

implicit
 

Euler
 

method,
 

which
 

indicates
 

the
 

ability
 

of
 

preserving
 

the
 

Poisson
 

structure
 

by
 

the
 

methods.
 

As
 

shown
 

by
 

the
 

figure,
 

the
 

implicit
 

Euler
 

method
 

can
 

not
 

preserve
 

the
 

Poisson
 

structure
 

exactly,
 

while
 

our
 

(p,p) -schemes
 

can.
 

Here
 

the
 

time
 

step
 

is
 

h =
0. 01.

Fig. 4　 Evolutions
 

of
 

H1
 

(a)
 

and
 

H2
 

(b)
 

by
 

(42),
 

(43),
 

(44),
 

and
 

the
 

implicit
 

Euler
 

method

Fig. 5　 Error
 

evolutions
 

of
 

the
 

Poisson
 

structure
 

by
(42),

 

(43),
 

(44),
 

and
 

the
 

implicit
 

Euler
 

method

5　 Conclusion
Theoretical

 

and
 

empirical
 

analyses
 

show
 

that
 

the
 

(p,p) -schemes,
 

based
 

on
 

the
 

Padé
 

approximations,
 

can
 

simulate
 

the
 

linear
 

stochastic
 

Poisson
 

systems
 

with
 

arbitrarily
 

high
 

root
 

mean-
square

 

orders
 

p
 

( p ≥ 1,
 

p ∈ ZZ ),
 

and
 

preservation
 

of
 

both
 

the
 

Poisson
 

structure
 

and
 

the
 

Casimir
 

functions.
 

They
 

constitute
 

a
 

class
 

of
 

stochastic
 

Poisson
 

integrators
 

for
 

linear
 

stochastic
 

Poisson
 

systems,
 

whose
 

superiorities
 

to
 

non-Poisson
 

integrators
 

are
 

illustrated
 

by
 

numerical
 

experiments.
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