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linear stochastic Poisson systems. The root mean-square convergence orders of the schemes are
analyzed, and the structure preserving properties are investigated. Numerical tests are performed to
verify the theoretical results and illustrate the numerical behavior of the proposed methods.
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Stochastic Poisson systems are defined as i b, (X) b (x b, (X) L (X
+ : +
stochastic systems of the form'" =1\ 94X, w(X) ; o(X)
: i i Gbkl( X)
dX(1)= BX)(VH(X)d: + Y, VH(X) - dW (1)) , X b,(X)|=0, (2)
i=1 !
X(1) ==, (1) for alli,j,k. It is called the structural matrix. H'(i =

where X(¢) ,x e R",B(X)=(b;(X)) e R"™is a

skew-symmetric matrix-valued function satisfying

0,-+,s) are smooth scalar functions, and (W'(¢),
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<+, W'(t)) is an s-dimensional standard Wiener

process. The small circle “o” before dW' denotes

stochastic  differential equations of Stratonovich
sense.

If n = 2d is even, and B(X) = J =
0 -1,
(Id 0 ) , where [, is the d-dimensional identity

systems (1)
[2-4]

matrix, the stochastic Poisson
degenerate to the stochastic Hamiltonian systems
of even dimensions 2d. If H' = 0fori=1,---,s, the
stochastic Poisson systems (1) degenerate to the

systems S

deterministic  Poisson whose long
history goes back to the 19th century. Their
stochastic counterparts, i. e. , the stochastic Poisson
systems ( 1), however, got attention, to our
knowledge, only in recent years (See Refs. [1, 8-
9]). As was pointed out in Refs. [5-7], etc.,
Poisson systems are generalizations of Hamiltonian
systems on Poisson manifolds, and find applications
in a vast variety of fields such as rigid bodies,
quantum mechanics, satellite orbits, magnetization
fluid dynamics, etc.

It can be proved that'"" | almost surely, the
phase flow ¢, :x I X (t) of the stochastic Poisson
systems (1) preserves the Poisson structure

aX(t)B(x)aX(t)"‘
ox ox

=B(X(t)), Yt=0.

(3)

As was given in Refs. [1,5-7], etc., a function

C(X) is called a Casimir function of a Poisson
system with structural matrix B(X) , if

VC(X)'B(X) = 0,for all X. (4)

It is not difficult to prove that (see Ref. [1]), the

Casimir functions C ( X) are invariants of the

stochastic Poisson systems (1).
Numerical methods preserve the Poisson
structure and the Casimir functions, namely, the

methods { X, | satisfying

n

u+lB X aX/1+1T B X
(")X” ( n) (")X" - ( n+1> ’
C(X,,,)=C(X,), Vn=0, (5)

]

. . r6 . .
are called Poisson integrators'”' . Poisson integrators

for deterministic Poisson systems have been

developed from various points of view ( see Refs.

[ 5-7] and references therein). Numerical methods
for stochastic Poisson systems, however, are still
rarely studied, except in a number of recent papers
on structure-preserving methods for certain special
stochastic Poisson systems with single noise or/and
even dimensions (e.g., Refs. [8-9]), as well as
our paper (Ref. [1]) on numerical methods based
on Darboux-Lie theorem for general stochastic
Poisson systems.

In this paper, we consider linear stochastic

Poisson systems of the form
dX (1) = B(VH(X)di + Y, VH'(X) = dW'(1)) ,
=

X(1,) =x,
(6)

where B € R ™" is a constant skew-symmetric
matrix, and H'(X) = ?XTC‘X, where C',i =0, -,

n, are constant symmetric matrices. Then (6) can
be rewritten as
dX(t) =A°Xdt + iAiXo dWi(t),
(7)
X(1,) =x,
where
A" =BC',i=0,-,s.
The exact solution of (7) is of the form

X(t) =
exp[ (1 —1,)A° + 2(Wi(t) - Wi(1,))A'] - X(1,).

(8)
On the analogy of the discussions for linear
Hamiltonian systems in Refs. [5, 10-11], we need
to simulate the random matrix exponential in (8)
order structure-

appropriately to obtain  high

preserving numerical solvers.

0 -1,
As mentioned above, as B = J =

I, 0

with n = 2d, the linear stochastic Poisson systems
(7) degenerate to the linear stochastic Hamiltonian
systems (SHSs). If, further, A" =0fori=1,---,s,
(7) will degenerate to the linear deterministic
Hamiltonian systems (DHSs). In Ref. [ 10], Feng

et al. simulated the matrix exponential exp[ (¢

n+l
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t,)A"] appearing in the exact solution of the linear with
DHSs, by appropriate Padé approximations, and g = (L +m-k)! 1
obtained high-order symplectic schemes. This ' (L+m)! kY (k)Y
approach was generalized in Ref. [ 11] to linear i (U +m-k)! m!
SHSs, where random matrix exponentials exp[ (¢,,, e (L+m)! k! (m-k)! "
The invertibility of the matrix D,, (M) can be

—1,)A"+ X (Wi(t,.,) = Wi(1,))A"] with A’ =
JC' (i = 0,---,s) were approximated by suitable
Padé approximations, to create stochastic symplectic
methods of high root mean-square orders.

In this paper, we apply Padé approximations to
the random matrix exponential in (8), to produce
stochastic Poisson integrators which preserve both
the Poisson structure and the Casimir functions of
the original linear stochastic Poisson systems (7)
and possess high root mean-square accuracy. This is
an extension of the above-mentioned Padé
approximation approaches for linear Hamiltonian

(51011 4 linear stochastic Poisson context.

systems
The contents of this paper are organized as
follows. In section 1, we construct the numerical

based on the Padé

namely, the (/,m) -schemes.

schemes approximations,
In section 2 we
analyze the root mean-square convergence orders of
the proposed (/,m) -schemes. In section 3 we prove
the preservation of the Poisson structure and the
Casimir functions by the (p,p) -schemes, that is,
the (I,m) -schemes when [ = m = p. Numerical
experiments are performed in section 4 to verify the
theoretical analysis and illustrate the numerical

behavior of the proposed schemes. Section 5 is a

brief conclusion.

1 Numerical schemes based on the
Padé approximations

To simulate the random matrix exponential in
(8), we can use the following Padé approximation
(see e.g. Refs. [10,12])

exp(M) = P, (M) =D, ,(M)N,,(M),(9)

L,m
where M represents an n X n dimensional square

l,m

matrix, [,m are positive integers, and
1
l,m k
D, (M)=I+ 3 d"(-M)",
k=1

m

N[,m(M) :I + 2 ni‘,ka

k=1

ensured by e. g. ‘Zizldi’m(—M)k‘ < 1
According to Ref. [ 5], when |M/| is small and
| M| —0, we have
| exp(M) =P, (M) |=0(1 M|"""),
(10)

Now we construct the following numerical

L,m

discretization for the linear stochastic Poisson system

(7)

1
X =1+ Yapr-z)'
k=1
[1+ Y nim(z,)!] X,
k=1
X" =x, (11)

where
Z,=hA" + ¥ [W(1,.,) - Wi(1,)]A",
i=1
t, =i, + nh.
W(t,.,) — W(t,) can be simulated by Vh¢! | and
& (i=1,-,5) are N(0,1) -distributed random

variables. To guarantee the invertibility of the matrix

]
I+ Zdi’m( - Z,)" in the scheme (11), we can
=1

!

require | Zdif’"( - Z)" I < 1, which can be
=1

realized by choosing sufficiently small h, and

truncating the random variables £’ as follows '’

é:fz’ l gtn l g Ah7
gi,h =134,, ffl > A, (12)
_Ah’ gi: < _Ah’

A, = m,c = 1 sufficiently large. The
truncation was proposed in Ref. [ 3] for constructing
implicit  stochastic ~ methods, where  the
unboundedness of AW = W(¢,,,) — W'(t,) may
cause zero denominators and thus collapse of the
methods. It was shown in Ref. [ 3] that, the root
mean —square convergence order v of the proposed

methods will not be affected by such truncations if ¢
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is sufficiently large such that ¢=2v.
After the truncation ( 12), we rewrite the

scheme (11) in the following form
[ J—
X=X dn(-z)' ] X+
k=1

[1+ S a2 X,
k=1
X;" =x, (13)
where

s

Zn = hAO + Z \/ﬁé’i’hAi. (14>
i=1

l,m

We can use fixed-point iterations to get X, in

! .
(13), where the condition | Z d&"(-Z)" <1
ey

guaranteed by the truncation (12) as well as
sufficiently small h satisfying
1 1
J2e 2e -ml?x§d2""} -0,
(15)
with Q, = Z i:l( Z z:O | A"l )", can as well ensure

h | Inh |

< min

the convergence of the iterations. In the following we
call the scheme (13) the (/,m) -scheme.

2 Root mean-square convergence
orders

Proposition 2.1'%'  Suppose the one-step

approximation )Z,x(t +h) has order of accuracy p, for
the mathematical expectation of the deviation and
order of accuracy p, for the mean-square deviation;
more precisely, for arbitrary ¢, <t <t, +T-h,x €
R ", the following inequalities hold ;
| E(X, (¢t +h) =X, (t+h))
< K(1+1 x 1),
[E1 X, (t+h) =X, (¢t +h) 2]

< K(1 +1 x12)2p", (16)
Also, let
1 1
pzaj,p.Bpﬁ? (17)

Then for any N and & = 0,1,---,N the following
inequality holds
[El Xto,)(o(tk) _X:O,xu<tk)) [ 2] 2
<K(1+E1 X, 1), (18)

i. e. the order of accuracy of the method constructed

using the one-step approximation i{,x(t +h)isp =
1
P 7"

Proposition 2. 2" Let the one-step

approximation fm(t + h) satisfy the conditions of
Theorem 2. 1. Suppose that im(t + h) is such that
| E(X,.(t+h) =X, (1+h)) 1 =0(k"),

[EIX, (t+h) =X, (1 +h) 1*]7* = 0(h")
(19)

with the same A" and ">, Then the method based on

the one-step approximation X, (¢ + h) has the same

root mean-square convergence order as the method

based on fm(t + h), i. e.,its root-mean-square
) 1

convergence order isp = p, — >

Using the above fundamental convergence

theorem and its corollary, namely the Propositions

2.1 and 2.2, we can

convergence theorem for the scheme (13).

Theorem 2.1

parity, and the truncation parameter ¢ in ( 12)

prove the following

If /| and m have the same

satisfies ¢ = [ + m, then the root mean-square
convergence order of the (/,m) -scheme (13) is
l+m
7
Proof Consider the following scheme
L+m
=1 !

X" =x, (20)
which is based on the one-step approximation
X" (¢ + hyt,x) =x +
l+m s
1 o
> A+ Y kgAY, (21)
=1 J! i=1
where {} is the truncation of the N(0,1) random
variable &' that makes W'(¢ + h) — W'(t) = Jhé'
Using Taylor expansion of the exponential, we have

the exact solution

+o 1 s ) o
X(t+hstx)= x+ 3 ——(hA" + 3 JhEA)x.
j=1J: i=1

(22)
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Then we can derive

| E(X(t+ h;t,x) —W(z +hit,x)) |

l+m 1 s ) o
<|E[Y T<hA" + Y JhEA) -
j=1 . i=1
l+m 1 s ) o
Y T(hAO + Y JhE A +
. i=1

j=1

+x 1 S . L
S (hA + Y, JREAY Tl x
jeirmer J! i=1
1
< (1+l x1*)*(L, +L, + L), (23)
where
l+m 1
L] = T
=1 !

B + 2 BEAY = (A" + Y ThGAY

L= |E(hA + 2 JREA

(I+m +1)l
L, = 3 —‘E(hA°+2f§‘A‘

j= l+m+2]

Due to the fact that, for square matrices M'(i = 0,

-s),andanyj =1 (jeZ),
(XmM) = Y Mem,
izo

ap,,0ie 10,1, st
J

1
and h < h? for0 < h < 1, by denoting&° = 1,{} =

1, we have

I+m j
L<Y L le 2
j=1 ! T, 0]5’0
AT(ET g el ) \
GO . -
< Z—hzmaxmw D | E(E”
Jj= 1] Osiss a].”-,(rje%(),---,s%
Tg) |
l+m 1
—Z—hzmaxmw D
j=1 ] 0=isss 0<py+tp <j

LEL(ED" (&) = (@) ()",
=0,p,eZ(i=1,-,s).

< O(h * ), where the principal

where p,

Obviously, L,
term, i. e. the term with lowest order, denoted by

P, , satisfies

_ K() l+,;+l
0 = S .,
(L+m+1)!
| E 2 A”'l.“AU/+m+l§Ul“.§UI+m+I
O Ty € 1]
KO l+m+1

< —h 2 max| Ai | I+m+1
(Il+m+1)! I<iss

PN it 538 &
z | E(f’rl .. 'rl+m+l) |
T 120 sy € 11 us]
K l+m+1 )
= h 7 max| A"
(l+m+1)! Isiss

> TELEY ()",

py+ap=lm]
where K, is a positive constant independent of h.
Then, if / + m + 1 is odd, due to independence of
&, we have P, = 0 which implies L, <

l+m+2 l+m+1

OCh * ). Asl+m+ liseven, L, < O(h * ).
According to the distributions of & and £}, and
1(pel),

lett =x — A,, we have for any p =

L E[(E)" = ()]
=2 J(x” —A’Z)exp(—x;)dx

A,

-1 L A}2
2 C Ahexp( 5
45

2

= 2K,

where
K, = max Cip! V/7m/2,
O=<susp-1
and the last inequality is due to

+ o 2

fl exp(— L) dt
0
{(V—l)(v—3)-~-4><2, v is odd,
(v - 1) (v =3)5x3/m/2, vis even,

forv =p — u which satisfies 1 < v < p.

Since A, = v/2¢ | Inh| , ¢ =1 + m, we have
A2
exp( - 7) ‘LA < 7 which implies
| EL(E) - (611 < 2K K" (25)

fori=1,--
independent of h.
On the other hand,

L E[(EH(H (&) ()" -
(D" LD @) T

< E[(E)(E)7 (&) (&) -
(C)"(E) (&) (E) T+
L EL(Z) (&) (&) ()" -
D)) (E T 1+

-+

,s. Note that K, , K, are positive constants
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DEE)” -
DT

LEL(I)" (&) (&
(DD (L

= E[(é‘:l)m _ (g}l)p]] »
| E[ (52)02,..(§s—1)p\._,(fvps] o
| E[ (52)02 _ (é,i)pz] »
L BLCE)™ (7)) 1+
R

L E[(&)" - ()"
L EL(Z)™ ()" T (26)

From (25) we know that
Lilem

| E[(fi)’)—(fi)”ﬂ—()(hz ) s
which, together with (26) , 1mphes that

1+m+

L, =0(h ). (27)
We have analyzed the order of L, above. In addition,
L, < O(h[ﬂ;”) obviously. Then we obtain
| ECX(1 + hst,x) =X (1 + hst,x)) |
< KO+ x1H)y T (28)

where K is a positive constant independent of i, and

l+m+1
rmf—l means the smallest integer larger than
l+m+1
or equal to ————— Therefore, when [ and m have

the same parity, namely [ + m + 1 is odd, the order

[+
of (28) would be n

+ 1. Otherwise, it would be

[+m+1
2
Now we estimate the second moment of the

error. Applying the inequality

k k
El Ya > <Ek(XElal® (29
i=1 i=1

we have

ElX(t+hst,x) X" (1 + hst
I+m

<El Y —(hA“ + Eng’)f -
j= 1]

x) 12

l+m

)y i(hAO + ng,/w

+ oo

D '—(hA°+ foA‘)’lz | x 12

j=l+m+1] 1

<31 x1%(L, +Ls + L), (30)

where
Lim g

Ly=E|Y ——[(h "+2f§AL>’—
j= 17!

2

’

(hA" + Y JhgiA) ]

1
L.=E|——
’ (l+m+1)!

’

(hAO + ZﬁgiAi)(l+m+l)

+0o0

Y '—(hAO + szA’)f

j=l+m+2 ] .

L =E

Again setting £€° = 1,£} =1, and applying (29) we

have

l+m

l+m
= )2(1')

B (1" + 3 gAY - (ha” + 3 gy |

1+m
< (l+m) 2 th| D
(rl,---,{rje}(),”',ﬂ
TLCAT(ETET 1...{2’/) | 2

l+m +1 J
<(l+m z (s )maxlA | %1/

iml (]1 2 0<is<s

z ,El g7 -

CADRRTIT 10,-

l+m 1)/

=(l+m )z
El (¢ )p""(f")

Meanwhile ,

T, o2
h .”gh |

S max | AT YR Y

2 Osiss

RSP CeD I
< 0<hl+m+l)’

the principal term of which, denoted by P;, satisfies

1 1
P, < Kh"E | Y
T30 e € T s
Aa-l...Ao-/+rn+]§g-l...fo-l+m+l | 2

iy 2(1+mel
max | A" |2

Isiss

Y El¢n

0<p+-4p,Sj

it is easy to see that L,

[+m+1 [+m+1
< K h'mist

.._§”l+m+1 | 2

Ty ‘rl+m+15’l s
_ K hl+m+1 “'"Hmax | A | 2(l+m+1)
I<siss

> EL(EH ()17

ppttp =limt]
= O(h*"Y
where K is a positive constant independent of h. Thus
Ly<O(h"™™"), and obviously, L, <O(h""?).
Similar to the analysis for (25), leti=x - A,

=1 (p € Z) that

we have for any p
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E1(£) - ()1
= 2j;h°°(xﬂ —A’,’,)zexp(— x;) d

+o P + A 2
=2f0 (;)CZAéftp'“)zexp(—<t 2’1) )d
+oo p-1
< 2]0 p(zo(c;)zAi"ﬁ”“)exp(—

p-1 A?
<2 (c;;)zAz“exp(- 2’)

t+A,)°
( /l) )dt
2

u=0

+o t2
f tz”_z"exp( - 7) dt
0

AZ
2pK z (Cu ZAZUGXp(_ 2)

u=0
1-p+l
< 20Kh T,

fori =1,

(31)
,s, where K, ,K; are positive constants
independent of h.

For L, , we have

LRI (€)@ ) E) -
L") (L) ()12

S EI (&) (&) E)" -
(L)) (87 (£ 1
E1(2)"(8) (871 (8)" -
(L)L) e (7)) (8" 1

e +
E1(£)"(&)" (&))" -
(L") (D) @)™ 1

=El (&N -pm it

El ()& ) e 1?

El ()" =17

EL (£ (87 ()1

-4

ElL(E)" - ()"

EL (&) (g™ (32)
From (31) we know that fori € {1,--- s},
EV(£) = (£)7 17 = 0(h ),
which , together with (32), implies that

L, < O(h"™™"). (33)

Considering also the orders of Ly and L, discussed

above, we obtain

[E1 X(t +hse,x) X" (1 +hse,x) 12]7

I+m+1

SL(1L+lx1)"7h 7

where L is a positive constant independent of h.

(34)

Applying Proposition 2.1, for the case that [

. [+m
and m have the same parity, we have p, = 5 +1,
I+m+1
J — So the root mean-square

convergence order of the numerical scheme (20) is

l+m
T

Next we consider the difference :
-X""(t + hst,x)

x) —exp(Z)x) -

X""(t + hyt,x)
= (X""(t + hst

(X" (1 + hst,x) - exp(Z)x)

+ o _
— j
= E c¢Zl'x,

j=2p+1

(35)
where

Z=hA"+ Y Jh{A', (36)
i=1

¢;,j =1 +m+ 1, are constants. Then we obtain
X" (¢ + hit,x)) |

> JhEATY
i=1

| E(X""(¢ + h;t,x)

<K, |E 2 (hA® +

j=l+m+1

(37)

1
+m+1

=0(h? ),

and

ELX""(t +hst,x) =X""(t + hst,x) |2

2 Ay |’

_ +00
k| ¥
j=l+m+1

- O(hl+m+] ) ,

(hA° +
(38)

where K ,and kz are positive constants independent of
h. Applying Proposition 2.2 we complete the proof
of Theorem 2. 1. Ul

3 Preservation of the Poisson

structure and the Casimir functions

For the Zin (14),

it is easy to verify the
following propositions
Proposition 3.1 Foranyn =0,n € Z ,
ZZ'lB :B(ZZH)T’

ZZM]B :_B(Z2n+l)T‘
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Proposition 3.2  Suppose f(x) is an even

polynomial and g(x) is an odd polynomial , then we have
AZ,)B=Bf(Z,") g(Z,)B =-Bg(Z,"),
(f(Z,) -8(Z,))(f(Z,) +g(Z,))B
= (f(Z,) +&(Z,))([(Z,) - ¢(Z,))B.

Now we prove the following theorem

Theorem 3.1 The (p,p) -schemes ( 13)
(I=m =p) preserve the Poisson structure of the
original linear stochastic Poisson system (7).

Proof Regarding the equivalent form (11) of
(13), we need to verify
aXPxI’ aXPJ’

n+l n+l
B(—_ )"

) ) &

=D:'(Z,)N, (Z,)BN, (Z,")D;'(Z,")

psp p.p p.p Psp
=B, (39)

which is equivalent to

N, (Z,)BN, (Z,")=D

p,p p,p

(z,)BD, (Z,").
(40)

p.p

Let
N, (Z)=fZ) +&(Z,),

Dp,])<Zn) :f(Zn) - g(Zn) ’
where f(x) is an even polynomial and g(x) is an

odd polynomial. Then it follows
N,,(Z,)BN, (2,

pop pop

=((z,) +g(Z,))BAZ,") +g(Z,"))

= (A2, +g(Z,))(f(Z,) - ¢(Z,))B

= (f(Z,) - &(Z,))([(Z,) +g(Z,))B

= (f(Z,) -&(Z,)BAZ,") -g(Z,"))
=D, (Z,)BD, (Z,"). 0

p,p

Next we prove the Casimir-preservation by the
(p,p) -scheme (13).

Theorem 3.2  The (p,p) -schemes ( 13)
(I=m=p) preserve the Casimir functions of the
linear stochastic Poisson system (7).

Proof From (13) we know

Xit, - X0 = BOYY,

where

0.7 = (X al’¥,(BY)") X -

(X (- 'Y, (BY,)") X2,
k=1

with an =hC’ + Z ﬁ{fhhci. By the fundamental

i=1
theorem of calculus, we have, for any Casimir
function C(X) of the linear stochastic Poisson
system (7),

c(xzn) - )

)
n+

n+1 n+1

1
= [vexer + 7 (xey, - X00) (X2 - XY dr
0

n+1

1
- f VC(X." +7(X0) - X0"))"B@, dr
0

=0,
where the last step is due to the fact that C(X) is a
Casimir function such that VC(X)'B = 0, for all
X. L]

4 Numerical experiments

In this section, we illustrate the performance of
the (p,p) -schemes (13) (/=m=p) via numerical
tests. We consider the following linear stochastic

Poisson system

dX(t) =
0 1 -1 2 1 1
-1 0 3 1 1 0]Xde+
1 -3 0 1 0 1
11 4 4
% 4 2 1|XodW(e) |,
4 1 2
X(,) =x. (41)

It can be proved that, the function C(X) = 3X'" +
X? + X% is a Casimir function of the system
(41). Moreover, the Hamiltonian functions
H'(X)= (X" +X2)2 + (X" +X9)?,
H(X)=11(X")? + 2(X?)* + 2(X¥)* +
8X(|)X(2) + 2x(2)X(3) + 8X<3)X<|)
are invariants of the system (41), since it holds
0 1 -1
(VH')'BVH* =0, whereB=(-1 0 3
1 -3 0
The stochastic poisson integrators, i. e., the

(p,p) -schemes (13) (p=1,2,3) for (41) read

1 1.
X = (13 + Ezn))(};1 +Z,X, (42)

n+l 2 n“*n+l
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n+l n

1 1 -
Xk = (13 + Z, + —(Z,l)z)xf;2 +
2 12

1 1 -
—Z, -—(Z)"| X2} 4
(2 n 12( n) ) n+l 9 ( 3)

n+l

1~ | - | O
X3'3 = (13 +7Z + E(Zn)z + 7<Zn)3)Xz’3 +

2 120
I e
(32, = 15(207 + 55207 X2, (48)
where

0 1 -1,.2 1 1
A=(-1 0o 3|t 1 of,

1 -3 o/l\1 o1

0 1 -1\/11 4 4
Al—% -1 0 3 2 1],

1 -3 0/\4 1 2

zZ,=hA" + k¢, AL
withA, = V4p | Inhl ,p=1,2,3.

Figure 1 illustrates the root mean-square orders
of the (p,p) -schemes (42), (43) and (44),
which are 1, 2 and 3, respectively, coinciding with
the theoretical result in Theorem 2. 1. Here we take
T =10, initial valuex =[ 1,0, — 1], and time steps
h = [0.005, 0.01, 0.02, 0.025, 0.05]. The
expectation is approximated by taking average over

1 000 sample paths.

In(ms—error)
o
[=]

— A X\
—A— 22
40 2
X}.S
0 — ¥ —Reference line with slope 1 (y=x+1)
-3 — ¥ —Reference line with slope 2 (y=2x-5)
Reference line with slope 3 (y=3x-10)
—60 L L L L L
=55 -5 —4.5 —4 =35 -3 -2.5

Inh

Fig.1 Root mean-square convergence orders
of (42), (43), and (44)

Figure 2 compares the numerical sample paths
of XV(t), X?(t) and X" (t) arising from the
(1,1)-scheme (42) and the implicit Euler method
with the reference solution. As can be seen, as time
step h = 0.01, both numerical methods can create

good path approximations. Ash =0. 1, however, the

implicit Euler fails to simulate the paths in
acceptable accuracy, while our (1,1)-scheme (42)

still behaves fairly well.
4

3t e

".‘-----.'.
e 8

X(0)

{
(b)

Fig.2 Sample paths produced by (42) and the implicit
Euler method for £=0.1 (a) and £2=0.01(b)

Figure 3 displays the computed Casimir
function C(X,) = 3X'"” + X'¥ + X9 arising from
the (1, 1)-scheme (42) and the implicit Euler
method with initial x = [1,1,1], from the (2,2)-
scheme (43) withx =[1,1,2], and from the (3,
3)-scheme (44) withx =[1,1,3]. We take T =
10,h = 0.1.

preserve the Casimir function.

Obviously, all the methods can

Figure 4 observes the evolution of the
Hamiltonians H'(X(t)) and H*(X(t)) over the
time interval t € [0,10], produced by the (1,1)-
scheme (42) and the implicit Euler with initial x =
[1,1,1], by the (2,2)-scheme (43) with initial
x=[1,1,2] and by the (3,3)-scheme (44) with
initial x = [1,1,3]. It is clear that, the implicit
Euler can not preserve the Hamiltonians, while our
(p,p) -schemes (p = 1,2,3) can. Here we take

h=0.1.
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75 ' ' ' ' Figure 5 demonstrates the evolution of the
71
X, X,
65} 1 “B(—)" - B
S _ ax, X, .
= ¢ relative error , arising from
z st ] 'B|
ERE the (p,p) -schemes (42), (43),(44), and the
g 45p [T X" withinitial value [1.1.1] 1 implicit Euler method, which indicates the ability of
a4l ——X?*? with initial value [1,1,2] " ] . .
S M 1 preserving the Poisson structure by the methods. As
35t X" with initial value [1,1,3] |
3 — — implicit Euler with initial value‘[l,l,l]'I shown by the figure, the 1mp1101t Euler method can
0 2 4 6 8 10

t

Fig.3 Preservation of Casimir function by (42) ,
(43), (44) ,and the implicit Euler method

2 . . . .
20
sl = =X"! with initial value [1,1,1]" |
== ==2 X*? with initial value [1,1,2]7
16 X with initial value [1,1,3]" 1
e mm implicit Euler with initial value [1,1,1]"] |
Sl .
jun)
10+ .

not preserve the Poisson structure exactly, while our
(p,p) -schemes can. Here the time step is h =

0.01.

70 . : .
65+ :
= = X" with initial value [1,1,1]"
60 swss X with initial value [1,1,2]" .
X7 with initial value [1,1,3]"
S mm implicit Euler with initial value [1,1,1]7]
T
o451t _
40 + -
35+ .
gy = = = = e = = e
30+ ——]
25 1 1 1 1
0 2 4 6 8 10
t
()

Fig.4 Evolutions of H '(a) and H*(b) by (42), (43), (44), and the implicit Euler method

x10 XM x10 X
1 1
0 e Aernnd 0 A A A ]
-1 -1
0 5 10 0 5 10
14 X33 Implicit Euler
0 0.05
—1 0
0 5 10 0 5 10

Fig.5 Error evolutions of the Poisson structure by
(42), (43), (44), and the implicit Euler method

5 Conclusion

Theoretical and empirical analyses show that
based on the Padé

approximations, can simulate the linear stochastic

the (p,p) -schemes,

Poisson systems with arbitrarily high root mean-

square ordersp ( p = 1, p € Z ), and preservation

of both the Poisson structure and the Casimir
functions. They constitute a class of stochastic
Poisson integrators for linear stochastic Poisson

systems, whose superiorities to  non-Poisson

integrators are illustrated by numerical experiments.
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