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Abstract　 Precision
 

matrix
 

inference
 

is
 

of
 

fundamental
 

importance
 

nowadays
 

in
 

high-dimensional
 

data
 

analysis
 

for
 

measuring
 

conditional
 

dependence.
 

Despite
 

the
 

fast
 

growing
 

literature,
 

developing
 

approaches
 

to
 

make
 

simultaneous
 

inference
 

for
 

precision
 

matrix
 

with
 

low
 

computational
 

cost
 

is
 

still
 

in
 

urgent
 

need.
 

In
 

this
 

paper,
 

we
 

apply
 

bootstrap-assisted
 

procedure
 

to
 

conduct
 

simultaneous
 

inference
 

for
 

high-dimensional
 

precision
 

matrix
 

based
 

on
 

the
 

recent
 

de-biased
 

nodewise
 

Lasso
 

estimator,
 

which
 

does
 

not
 

require
 

the
 

irrepresentability
 

condition
 

and
 

is
 

easy
 

to
 

implement
 

with
 

low
 

computational
 

cost.
 

Furthermore,
 

we
 

summary
 

a
 

unified
 

framework
 

to
 

perform
 

simultaneous
 

confidence
 

intervals
 

for
 

high-dimensional
 

precision
 

matrix
 

under
 

the
 

sub-Gaussian
 

case.
 

We
 

show
 

that
 

as
 

long
 

as
 

some
 

precision
 

matrix
 

estimation
 

effects
 

are
 

satisfied,
 

our
 

procedure
 

can
 

focus
 

on
 

different
 

precision
 

matrix
 

estimation
 

methods
 

which
 

owns
 

great
 

flexibility.
 

Besides,
 

distinct
 

from
 

earlier
 

Bonferroni-Holm
 

procedure,
 

this
 

bootstrap
 

method
 

is
 

asymptotically
 

nonconservative.
 

Both
 

numerical
 

results
 

confirm
 

the
 

theoretical
 

results
 

and
 

computational
 

advantage
 

of
 

our
 

method.
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基于高维精度矩阵的置信区间的一致性理论

王月,李阳,郑泽敏

(中国科学技术大学管理学院,
 

合肥
 

230026)

摘　 要　 随着高维数据的不断发展,精度矩阵作为衡量变量间条件相依性的有效工具引起广

泛关注。 尽管已有大量文献研究精度矩阵,但如何发展一种低计算成本的方法构造高维精度

矩阵的同时推断变得尤为迫切。 基于 nodewise
 

Lasso 估计量,利用 bootstrap
 

assisted
 

策略构造

同时置信区间。 与现有方法相比,该方法在理论上不需要不可解释性条件且计算成本非常低。
进一步,总结出在次高斯情形下,精度矩阵同时置信区间的一致性理论,即只要精度矩阵某些
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估计性质满足,该方法可以基于不同的精度矩阵估计方法进行推断。 此外,不同于传统的

Bonferroni-Holm,该方法是渐近非保守的。 模拟结果验证了该方法的优势。
关键词　 精度矩阵;高维;bootstrap-assisted;置信区间;同时推断;纠偏

　 　 Nowadays,
 

high-dimensional
 

data
 

which
 

are
 

referred
 

to
 

as
 

small
 

n
 

large
 

p
 

data,
 

develop
 

extremely
 

rapidly.
 

Graphical
 

models
 

have
 

been
 

extensively
 

used
 

as
 

a
 

solid
 

tool
 

to
 

measure
 

conditional
 

dependence
 

structure
 

between
 

different
 

variables,
 

ranging
 

from
 

genetics,
 

proteins
 

and
 

brain
 

networks
 

to
 

social
 

networks,
 

online
 

marketing
 

and
 

portfolio
 

optimization.
 

It
 

is
 

well
 

known
 

that
 

the
 

edges
 

of
 

Gaussian
 

graphical
 

model
 

( GGM)
 

are
 

encoded
 

by
 

the
 

corresponding
 

entries
 

of
 

the
 

precision
 

matrix[1] .
 

While
 

most
 

of
 

the
 

existing
 

work
 

concentrates
 

on
 

the
 

estimation
 

and
 

individual
 

inference
 

of
 

precision
 

matrix,
 

simultaneous
 

inference
 

methods
 

are
 

generally
 

reckoned
 

to
 

be
 

more
 

useful
 

in
 

practical
 

applications
 

because
 

of
 

the
 

valid
 

reliability
 

assurance.
 

Therefore,
 

it
 

is
 

in
 

urgent
 

need
 

to
 

develop
 

approaches
 

to
 

make
 

inference
 

for
 

groups
 

of
 

entries
 

of
 

the
 

precision
 

matrix.
 

Making
 

individual
 

inference
 

for
 

the
 

precision
 

matrix
 

has
 

been
 

widely
 

studied
 

in
 

the
 

literature.
 

Ref. [2]
 

first
 

advocated
 

multiple
 

testing
 

for
 

conditional
 

dependence
 

in
 

GGM
 

with
 

false
 

discovery
 

rates
 

control.
 

It’s
 

a
 

pity
 

that
 

this
 

method
 

can
 

not
 

be
 

applied
 

to
 

construct
 

confidence
 

intervals
 

directly.
 

To
 

address
 

this
 

issue,
 

based
 

on
 

the
 

so-called
 

de-biased
 

or
 

de-sparsified
 

procedure,
 

Refs. [3-4] designed
 

to
 

remove
 

the
 

bias
 

term
 

of
 

the
 

initial
 

Lasso-type
 

penalized
 

estimators
 

and
 

achieved
 

asymptotically
 

normal
 

distribution
 

for
 

each
 

entry
 

of
 

the
 

precision
 

matrix.
 

Difference
 

lies
 

in
 

that
 

Ref. [3]
 

adopted
 

graphical
 

Lasso
 

as
 

initial
 

Lasso-type
 

penalized
 

estimator
 

but
 

Ref. [4]
 

focused
 

on
 

nodewise
 

Lasso.
 

They
 

both
 

followed
 

the
 

way
 

of
 

Refs. [5-8] which
 

proposed
 

de-biased
 

steps
 

for
 

inference
 

in
 

high-
dimensional

 

linear
 

models.
 

While
 

most
 

recent
 

studies
 

have
 

focused
 

on
 

the
 

individual
 

inference
 

in
 

high-dimensional
 

regime,
 

the
 

simultaneous
 

inference
 

remains
 

largely
 

unexplored.
 

Refs. [9-11]creatively
 

proposed
 

multiplier
 

bootstrap
 

method.
 

Based
 

on
 

the
 

individual
 

confidence
 

interval,
 

Ref. [12]
 

proposed
 

simultaneous
 

confidence
 

intervals
 

via
 

applying
 

bootstrap
 

scheme
 

to
 

high-dimensional
 

linear
 

models.
 

Distinct
 

from
 

earlier
 

Bonferroni-Holm
 

procedure,
 

this
 

bootstrap
 

method
 

is
 

asymptotically
 

nonconservative
 

because
 

it
 

considers
 

the
 

correlation
 

among
 

the
 

test
 

statistics.
 

More
 

recently,
 

Ref. [13]
 

considered
 

combinatorial
 

inference
 

aiming
 

at
 

testing
 

the
 

global
 

structure
 

of
 

the
 

graph
 

at
 

the
 

cost
 

of
 

heavy
 

computation
 

and
 

only
 

limited
 

to
 

the
 

Gaussian
 

case.
 

Motivated
 

by
 

these
 

concerns,
 

we
 

develop
 

a
 

bootstrap-assisted
 

procedure
 

to
 

conduct
 

simultaneous
 

inference
 

for
 

high-dimensional
 

precision
 

matrix,
 

based
 

on
 

the
 

de-biased
 

nodewise
 

Lasso
 

estimator.
 

Moreover,
 

we
 

summary
 

a
 

unified
 

framework
 

to
 

perform
 

simultaneous
 

inference
 

for
 

high-dimensional
 

precision
 

matrix.
 

Our
 

method
 

imitates
 

Ref. [12]
 

but
 

generalizes
 

bootstrap-assisted
 

scheme
 

to
 

graphical
 

models
 

and
 

we
 

conclude
 

general
 

theory
 

that
 

our
 

method
 

is
 

applicative
 

as
 

long
 

as
 

precision
 

matrix
 

estimation
 

satisfies
 

some
 

common
 

conditions.
 

The
 

major
 

contributions
 

of
 

this
 

paper
 

are
 

threefold.
 

First
 

of
 

all,
 

we
 

develop
 

a
 

bootstrap-assisted
 

procedure
 

to
 

conduct
 

simultaneous
 

inference
 

for
 

high-dimensional
 

precision
 

matrix,
 

which
 

is
 

adaptive
 

to
 

the
 

dimension
 

of
 

the
 

concerned
 

component
 

and
 

considers
 

the
 

dependence
 

within
 

the
 

de-biased
 

nodewise
 

Lasso
 

estimators
 

while
 

Bonferroni-Holm
 

procedure
 

cannot
 

attain.
 

Second,
 

our
 

method
 

is
 

easy
 

to
 

implement
 

and
 

enjoy
 

nice
 

computational
 

efficiency
 

without
 

loss
 

of
 

accuracy.
 

Last,
 

we
 

provide
 

theoretical
 

guarantees
 

for
 

constructing
 

simultaneous
 

confidence
 

intervals
 

of
 

the
 

precision
 

matrix
 

under
 

a
 

unified
 

framework.
 

We
 

prove
 

that
 

our
 

simultaneous
 

testing
 

procedure
 

asymptotically
 

achieves
 

the
 

preassigned
 

significance
 

level
 

even
 

when
 

the
 

model
 

is
 

sub
 

Gaussian
 

and
 

the
 

dimension
 

is
 

exponentially
 

larger
 

than
 

sample
 

size.
 

Notations.
 

For
 

a
 

vector
 

x = (x1,…,xp) T ,
 

denote ‖x‖q = (∑
p

j = 1
| x j | q) 1 / q

 

the
 

lq -norm
 

for
 

q∈
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(0,∞ ),‖x‖0 =| { j:x j ≠ 0} | ,‖x‖∞ = max
1≤i≤p

| xi | ,
 

(x) i
 denote

 

the
 

ith
 

row
 

of
 

x
 

and
 

x -j
 denote

 

the
 

sub-vector
 

without
 

jth
 

component.
 

For
 

a
 

matrix
 

A =

(aij) ∈ ℝ p×q,
 

denote
 

‖A‖1 = max
1≤j≤q

∑
p

i = 1
| aij | ,

‖A‖∞ =max
1≤i≤p

∑ q

j = 1
| aij | ,‖A‖max =max

i,j
| aij | ,

‖A‖2 = λmax(ATA) 1 / 2
 

the
 

matrix
 

l1 - norm,
 

l∞ -
norm,

 

elementwise
 

maximum
 

norm,
 

and
 

spectral
 

norm,
 

respectively,
 

where
 

λmin(A)
 

and
 

λmax(A)
 

denote
 

the
 

minimum
 

and
 

maximum
 

eigenvalues
 

of
 

the
 

given
 

matrix
 

A. Aij
 denote

 

the
 

( i,j) -entry
 

of
 

A,
A j

 denote
 

the
 

jth
 

column
 

of
 

A,A( i)
 denote

 

the
 

ith
 

row
 

of
 

A,A -j
 denote

 

the
 

sub-matrix
 

of
 

A
 

without
 

the
 

jth
 

column,
 

A -i,j
 denote

 

the
 

jth
 

column
 

of
 

A
 

without
 

its
 

ith
 

entry
 

and
 

A -i,-j
 denote

 

the
 

sub-matrix
 

of
 

A
 

without
 

the
 

ith
 

row
 

and
 

jth
 

column.
 

For
 

two
 

real
 

sequences
 

{ fn}
 

and
 

{gn},
 

we
 

write
 

fn = O(gn)
 

if
 

there
 

exists
 

a
 

constant
 

C
 

such
 

that
 

| fn | ≤ C | gn |
 

holds
 

for
 

all
 

n,fn = o(gn)
 

if
 

lim
n→∞

fn / gn = 0
 

and
 

fn gn
 

if
 

fn =O(gn)
 

and
 

gn =O( fn) .
 

The
 

sub-gaussian
 

norm
 

of
 

a
 

random
 

variable
 

Z,
 

denoted
 

by
 

‖Z‖ψ2
,

 

is
 

defined
 

as
 

‖Z‖ψ2
= sup

q≥1
 

q -1 / 2( Zq)1 / q .
 

The
 

sub-

Gaussian
 

norm
 

of
 

a
 

random
 

vector
 

Z
 

is
 

defined
 

as
 

‖Z‖ψ2
= sup

‖x‖ = 1
‖〈Z,x〉‖ψ2

.
 

Finally,
 

the
 

sub-

exponential
 

norm
 

of
 

random
 

variable
 

Z
 

is
 

defined
 

as
 

‖Z‖ψ1
= sup

q≥1
q -1( Zq)1 / q . ci  and

 

C i
 be

 

some
 

constants
 

independent
 

of
 

n
 

and
 

p.
 

1　 Methodology
1. 1　 Model

 

setting
Under

 

the
 

graphical
 

model
 

framework,
 

denote
 

by
 

X
 

an
 

n × p
 

random
 

design
 

matrix
 

with
 

p
 

covariates.
 

Assume
 

that
 

X
 

has
 

independent
 

sub-Gaussian
 

rows
 

X( i) ,
 

that
 

is,
 

there
 

exists
 

constant
 

K
 

such
 

that
sup

α∈ℝ p:‖α‖2≤1
exp( | αTX( i) | 2 / K2) ≤ 2. (1)

1. 2　 De-biased
 

nodewise
 

Lasso
Characterizing

 

the
 

distribution
 

of
 

Lasso-type
 

estimator
 

for
 

precision
 

matrix
 

is
 

difficult
 

because
 

Lasso-type
 

estimator
 

is
 

biased
 

due
 

to
 

the
 

l1

 penalization.
 

To
 

address
 

this
 

problem,
 

Refs. [3-4]
adopted

 

de-biasing
 

idea
 

which
 

is
 

to
 

start
 

with
 

graphical
 

Lasso
 

or
 

nodewise
 

Lasso
 

estimator
 

and
 

then
 

remove
 

its
 

bias.
 

This
 

results
 

in
 

de-biased
 

estimator
 

generally
 

taking
 

the
 

form
Θ︶ =Θ︿ -Θ︿ T(Σ︿ Θ︿ - Ip) .

Then
 

we
 

have
 

the
 

following
 

estimation
 

error
 

decomposition

n (Θ︶ jk -Θ jk) = - nΘT
j (Σ

︿ - Σ)Θk + Δ jk

= -∑
n

i =1
(ΘT

j X(i)XT
(i)Θk / n -Θjk) +Δjk,

where
 

Σ
︿ = XTX / n

 

is
 

the
 

empirical
 

covariance.
 

The
 

first
 

term
 

is
 

the
 

main
 

term
 

whose
 

covariance
 

works
 

out
 

as
 

Var (ΘT
j X( i)XT

( i) Θk),
 

while
 

the
 

second
 

term
 

is
 

the
 

bias
 

term
 

and
 

is
 

controlled
 

by
 

Op( slogp / ( n ) .

　 　 Various
 

estimations
 

of
 

Θ︿
 

have
 

been
 

offered
 

by
 

different
 

works,
 

but
 

the
 

basic
 

insight
 

lies
 

in
 

that
 

Θ︿
 

should
 

act
 

as
 

a
 

good
 

initial
 

estimator.
 

In
 

this
 

paper,
 

we
 

adopt
 

the
 

de-biased
 

nodewise
 

Lasso
 

proposed
 

in
 

Ref. [4]
 

to
 

illustrate
 

our
 

simultaneous
 

inference
 

approach
 

due
 

to
 

the
 

appealing
 

property
 

that
 

de-
biased

 

nodewise
 

Lasso
 

does
 

not
 

require
 

the
 

irrepresentability
 

condition
 

and
 

is
 

easy
 

to
 

implement
 

with
 

low
 

computational
 

cost.
 

More
 

general
 

choices
 

of
 

Θ︿
 

will
 

be
 

introduced
 

in
 

Section
 

4.
 

Following
 

Ref.
[4],

 

for
 

each
 

j = 1,…,p,
 

define
 

the
 

vector
 

γ︿ j =

{γ︿ j,k,k = 1,…,p,j ≠ k}
 

as

γ︿ j = arg min
γ∈ℝ p-1

1
n

‖X j - X -jγ‖2
2 + 2λ j‖γ‖1{ } .

Further
 

we
 

let
Γ︿ j = ( -γ︿ j,1,…, -γ︿ j,j -1,1, -γ︿ j,j +1,…, -γ︿ j,p) T,

τ︿ 2
j = ‖X j - X -jγ

︿
j‖2

2 / n + λ j‖γ︿ j‖1 .
Then

 

the
 

jth
 

column
 

of
 

the
 

nodewise
 

Lasso
 

estimator
 

Θ︿
 

is
 

defined
 

as
Θ︿ j =Γ

︿
j / τ

︿ 2
j .

However,
 

we
 

realize
 

that
 

Θ︿
 

is
 

not
 

unique.
 

It
 

only
 

needs
 

to
 

be
 

a
 

good
 

estimator
 

of
 

Σ -1
 

in
 

order
 

for
 

the
 

de-biasing
 

procedure
 

to
 

work.
 

As
 

a
 

consequence,
 

our
 

approach
 

applies
 

to
 

general
 

precision
 

matrix
 

inference.
 

By
 

contrast,
 

earlier
 

approaches
 

applied
 

only
 

to
 

de-biased
 

graphical
 

Lasso,
 

as
 

in
 

Ref. [3],
 

or
 

de-biased
 

gnodewise
 

Lasso
 

as
 

in
 

Ref. [4].
 

The
 

only
 

assumptions
 

we
 

make
 

on
 

Θ︿
 

are
 

the
 

event
 

H
 

containing
 

three
 

common
 

conditions
 

described
 

in
 

Section
 

1. 4.
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1. 3　 Simultaneous
 

confidence
 

intervals
We

 

extend
 

the
 

idea
 

of
 

de-biased
 

nodewise
 

Lasso
 

estimator
 

to
 

construct
 

confidence
 

intervals
 

for
 

any
 

subsets
 

of
 

the
 

entries
 

of
 

the
 

precision
 

matrix.
 

Specifically,
 

we
 

are
 

interested
 

in
 

deriving
 

the
 

distribution
 

of
 

max
( j,k)∈E

n (Θ︶ jk -Θjk) .
 

For
 

convenience,
 

define
 

statistic

TE =∶ max
( j,k)∈E

n (Θ︶ jk -Θ jk) . (2)

Following
 

the
 

idea
 

of
 

Refs. [9-10,
 

12],
 

we
 

use
 

a
 

bootstrap-assisted
 

scheme
 

to
 

make
 

simultaneous
 

inference
 

for
 

graphical
 

model.
 

Let
 

{ei} n
i = 1

 be
 

an
 

i. i.
d.

 

sequence
 

of
 

N(0,1)
 

random
 

variables
 

independent
 

of
 

Xi .
 

Define
 

the
 

multiplier
 

bootstrap
 

statistic
 

as
 

follows

WE =∶ max
( j,k)∈E

∑
n

i = 1
Z︿ ijkei / n , (3)

where
 

Z︿ ijk = Θ︿ T
j X( i)XT

( i) Θ︿ k - Θ︿ jk
 independent

 

of
 

{ei} n
i = 1

 and
 

E
 

to
 

be
 

an
 

arbitrary
 

subset
 

of
 

[p] ×
[p] .

 

The
 

bootstrap
 

critical
 

value
 

is
 

determined
 

by
c1-α,E = inf{ t ∈ ℝ : e(WE ≤ t) ≤ 1 - α)},

(4)
denoting

 

the
 

(1 - α) -quantile
 

of
 

the
 

statistic
 

WE,
 

where
 

e
 is

 

the
 

probability
 

measure
 

induced
 

by
 

the
 

variables
 

{ei} n
i = 1

 with
 

X
 

fixed,
 

that
 

is,
 

e(WE ≤ t) =
(WE ≤ t | X) .

 

The
 

core
 

point
 

lies
 

in
 

that
 

we
 

want
 

to
 

use
 

the
 

quantile
 

of
 

the
 

statistic
 

WE
 to

 

asymptotically
 

estimate
 

the
 

quantile
 

of
 

the
 

statistic
 

TE .
 

We
 

will
 

provide
 

the
 

strict
 

theoretical
 

proof
 

in
 

Section
 

3.
 

Remark
 

1. 1 　 Bonferroni-Holm
 

adjustment
 

states
 

that
 

if
 

an
 

experimenter
 

is
 

testing
 

p
 

hypotheses
 

on
 

a
 

set
 

of
 

data,
 

then
 

the
 

statistical
 

significance
 

level
 

for
 

each
 

independent
 

hypothesis
 

separately
 

is
 

1 / p
 

times
 

what
 

it
 

would
 

be
 

if
 

only
 

one
 

hypothesis
 

were
 

tested.
 

However,
 

the
 

bootstrap
 

uses
 

the
 

quantile
 

of
 

the
 

multiplier
 

bootstrap
 

statistic
 

to
 

asymptotically
 

estimate
 

the
 

quantile
 

of
 

the
 

target
 

statistic
 

and
 

takes
 

dependence
 

among
 

the
 

test
 

statistics
 

into
 

account.
 

Thus
 

the
 

original
 

method
 

with
 

Bonferroni-Holm
 

is
 

on
 

the
 

conservative
 

side,
 

while
 

the
 

bootstrap
 

is
 

closer
 

to
 

the
 

preassigned
 

significance
 

level.
 

1. 4　 A
 

unified
 

theory
 

for
 

confidence
 

intervals
Define

 

the
 

parameter
 

set
( s) = {Θ ∈ ℝ p×p:1 / L ≤ λmin(Θ) ≤

λmax(Θ) ≤ L,
max
j∈[p]

‖Θj‖0 ≤ s,‖Θ‖1 ≤ C}

for
 

some
 

1 ≤ L ≤ C.
 

We
 

can
 

extend
 

the
 

above
 

conclusions
 

to
 

more
 

general
 

regime.
 

Let
 

Θ︿
 

be
 

any
 

estimator
 

of
 

the
 

precision
 

matrix
 

Θ
 

satisfying
 

the
 

following
 

event
 

H:

‖Θ︿ - Θ‖max = Op( logp / n ),

‖Θ︿ - Θ‖1 = Op( s logp / n ),

‖Σ︿ Θ︿ - Ip‖max = Op( logp / n ),
with

 

probability
 

tending
 

to
 

one
 

uniformly
 

over
 

the
 

parameter
 

space
 

( s) .
 

In
 

fact,
 

event
 

H
 

contains
 

very
 

mild
 

conditions.
 

As
 

we
 

all
 

know,
 

many
 

precision
 

matrix
 

estimation
 

methods
 

satisfy
 

the
 

above
 

conditions,
 

such
 

as
 

graphical
 

Lasso,
 

CLIME
 [14] ,

 

SCIO
 [15]

 

and
 

so
 

on.
 

The
 

de-biased
 

graphical
 

Lasso
 

inference
 

has
 

already
 

been
 

proposed
 

in
 

Ref. [3].
 

Different
 

from
 

them,
 

we
 

conclude
 

a
 

more
 

general
 

theory
 

as
 

long
 

as
 

it
 

satisfies
 

the
 

event
 

H,
 

we
 

can
 

obtain
 

simultaneous
 

confidence
 

intervals
 

honestly.
 

Besides,
 

our
 

theory
 

applies
 

to
 

sub-Gaussian
 

case.
 

Theoretical
 

properties
 

will
 

be
 

provided
 

in
 

the
 

following
 

section.
 

2　 Theoretical
 

properties
Before

 

giving
 

the
 

theoretical
 

properties,
 

we
 

list
 

two
 

technical
 

conditions.
 

(A1)
 

Assume
 

that
 

slogp / n = o(1) .
 

( A2 )
 

Assume
 

that
 

B2
n(log(pn)) 7 / n ≤ C1n

-c1,
 

where
 

Bn ≥ 1
 

be
 

a
 

sequence
 

of
 

constants
 

and
 

lim
n→∞

Bn = ∞ ,
 

and
 

c1
 and

 

C1
 are

 

some
 

positive
 

constants.
 

Proposition
 

2. 1 　 ( Lemma
 

1
 

of
 

Ref. [4])
 

Consider
 

the
 

sub-Gaussian
 

model
 

and
 

let
 

Θ︿
 

be
 

the
 

nodewise
 

Lasso
 

estimator
 

with
 

λ j
 logp / n

 

uniformly
 

in
 

j.
 

Then
 

for
 

any
 

( j,k) ∈ [p] × [p],
 

we
 

have

n (Θ︶ jk -Θ jk) = - ΘT
j (Σ

︿ - Σ)Θk + Δ jk,

where
 

Δ jk = - n {(Θ︿ j-Θj) T(Σ︿ Θ︿ k-ek) +(Θ︿ k -Θk) T

(Σ︿ Θj-ej)}
 

and
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high-dimensional
 

precision
 

matrix

lim
n→∞

sup
Θ∈ ( s)

max
( j,k)∈[p] ×[p]

| Δ jk | ≥ O
slogp
n( ){ } = 0.

Furthermore,
 

define
 

the
 

variance
 

σ 2
jk = Var(ΘT

j X1XT
1

Θk) .
 

If
 

condition
 

(A1)
 

holds,
 

we
 

have

lim
n→∞

sup
Θ∈ ( s)

| ( n (Θ︶ jk -Θ jk) / σ︿ jk ≤ z) -

Φ( z) | = 0,

where
 

σ︿ 2
jk = ∑

n

i = 1
( Θ︿ T

j X( i)XT
( i) Θ︿ k) 2 / n - Θ︿ 2

jk
 is

 

a
 

consistent
 

estimator
 

of
 

σ 2
jk .

 

Based
 

on
 

the
 

asymptotic
 

normality
 

properties
 

established
 

in
 

Proposition
 

2. 1,
 

we
 

have
 

the
 

following
 

simultaneous
 

confidence
 

intervals
 

for
 

multiple
 

entries
 

Θ jk .
 

Theorem
 

2. 1　 Assume
 

that
 

conditions
 

( A1)-
(A2)

 

hold.
 

Then
 

for
 

any
 

E ⊆ [p] × [p],
 

we
 

have
lim
n→∞

sup
Θ∈ (s)

sup
α∈(0,1)

( n‖Θ︶ E -ΘE‖max ≤ c1-α,E) -
(1 - α) = 0,

where
 

ΘE
 denotes

 

the
 

entries
 

of
 

Θ
 

with
 

indices
 

in
 

E.
 

　 　 Theorem
 

2. 1
 

states
 

that
 

we
 

can
 

approximate
 

the
 

(1 - α )-quantile
 

of
 

max
( j,k)∈E

　 n | Θ︶ jk -Θ jk |
 

by
 

(1 -

α )-quantile
 

of
 

the
 

multiplier
 

bootstrap
 

statistic
 

WE

 consistently.
 

Note
 

that
 

although
 

we
 

cannot
 

compute
 

the
 

quantile
 

of
 

WE
 analytically,

 

we
 

can
 

obtain
 

it
 

via
 

Monte
 

Carlo
 

simulations
 

in
 

practice.
 

This
 

result
 

derives
 

the
 

simultaneous
 

confidence
 

intervals
 

for
 

Θ jk

 as:
 

Θ︶ jk ± c1-α,E / n
 

where
 

( j,k) ∈ E.
 

As
 

discussed
 

in
 

Ref. [9],
 

our
 

method
 

applies
 

to
 

high-dimensional
 

situation.
 

In
 

contrast
 

with
 

the
 

earlier
 

Bonferroni
 

simultaneous
 

confidence
 

intervals,
 

our
 

bootstrap-
assisted

 

scheme
 

is
 

asymptotically
 

nonconservative
 

and
 

can
 

work
 

for
 

arbitrary
 

subset
 

E.
 

Next,
 

we
 

extend
 

the
 

above
 

theory
 

to
 

more
 

general
 

case
 

and
 

conclude
 

the
 

unified
 

theory
 

for
 

precision
 

matrix
 

inference.
 

Theorem
 

2. 2 　 Assume
 

that
 

event
 

H
 

holds.
 

Then
 

we
 

have
lim
n→∞

sup
Θ∈ (s)

sup
α∈(0,1)

( n‖Θ︶ E -ΘE‖max ≤ c1-α,E) -
(1 - α) = 0,

for
 

any
 

E ⊆ [p] × [p],
 

where
 

ΘE
 denotes

 

the
 

entries
 

of
 

Θ
 

with
 

indices
 

in
 

E.
 

Next,
 

we
 

extend
 

the
 

above
 

theory
 

to
 

more
 

general
 

case
 

and
 

conclude
 

the
 

unified
 

theory
 

for
 

precision
 

matrix
 

inference.
 

Theorem
 

2. 3 　 Assume
 

that
 

event
 

H
 

holds.
 

Then
 

we
 

have
(A)(Individual

 

inference)

lim
n→∞

sup
Θ∈ ( s)

| ( n (Θ︶ jk -Θ jk) / σ︿ jk ≤ z) -

Φ( z) | = 0,

where
 

σ︿ 2
jk = ∑

n

i = 1
( Θ︿ T

j X( i)XT
( i) Θ

︿

k) 2 / n - Θ
︿

2
jk

 is
 

a
 

consistent
 

estimator
 

of
 

σ 2
jk .

 

(B)(Simultaneous
 

inference)
lim
n→∞

sup
Θ∈ ( s)

sup
α∈(0,1)

n‖Θ︶ E -ΘE‖max ≤ c1-α,E( ) -

(1 - α) = 0,
for

 

any
 

E ⊆ [p] × [p],
 

where
 

ΘE
 denotes

 

the
 

entries
 

of
 

Θ
 

with
 

indices
 

in
 

E.
 

Theorem
 

2. 3
 

presents
 

general
 

conclusions
 

for
 

both
 

individual
 

and
 

simultaneous
 

confidence
 

intervals.
 

That
 

is,
 

our
 

inferential
 

procedures
 

work
 

for
 

any
 

estimation
 

methods
 

for
 

precision
 

matrix
 

as
 

long
 

as
 

the
 

estimation
 

effect
 

satisfies
 

event
 

H.
 

3　 Numerical
 

studies
In

 

this
 

section,
 

we
 

investigate
 

the
 

finite
 

sample
 

performance
 

of
 

the
 

methods
 

proposed
 

in
 

Section
 

3
 

and
 

provide
 

a
 

comparison
 

to
 

simultaneous
 

confidence
 

interval
 

for
 

de-biased
 

graphical
 

Lasso,
 

denoted
 

by
 

S-
NL

 

and
 

S-GL,
 

respectively.
 

We
 

now
 

present
 

two
 

numerical
 

examples
 

and
 

evaluate
 

the
 

methods
 

by
 

estimated
 

average
 

coverage
 

probabilities
 

( avgcov )
 

and
 

average
 

confidence
 

interval
 

lengths
 

( avglen )
 

over
 

two
 

cases:
 

support
 

set
 

S
 

and
 

its
 

complement
 

Sc .
 

For
 

convenience,
 

we
 

only
 

consider
 

Gaussian
 

setting.
 

The
 

implementation
 

for
 

de-biased
 

nodewise
 

Lasso
 

and
 

de-biased
 

graphical
 

Lasso
 

are
 

suggested
 

by
 

Ref.
[4].

 

Throughout
 

the
 

simulation,
 

the
 

level
 

of
 

significance
 

is
 

set
 

at
 

α = 0. 05
 

and
 

the
 

coverage
 

probabilities
 

and
 

interval
 

lengths
 

calculated
 

by
 

averaging
 

over
 

100
 

simulation
 

runs
 

and
 

500
 

Monte
 

Carlo
 

replications.
 

For
 

extra
 

comparison,
 

we
 

also
 

record
 

individual
 

confidence
 

intervals
 

for
 

de-biased
 

nodewise
 

Lasso
 

and
 

de-biased
 

graphical
 

Lasso,
 

denoted
 

by
 

I-NL
 

and
 

I-GL,
 

respectively.
 

3. 1　 Numerical
 

example
 

1:
 

band
 

structure
We

 

start
 

with
 

a
 

numerical
 

example
 

which
 

has
 

571
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the
 

similar
 

setting
 

as
 

that
 

in
 

Ref. [3].
 

We
 

consider
 

the
 

precision
 

matrix
 

Θ
 

with
 

the
 

band
 

structure,
 

where
 

Θ jj = 1,Θ j,j +1 =Θ j +1,j = ρ
 

for
 

j = 1,2,…,p - 1,
 

andzero
 

otherwise.
 

We
 

sample
 

the
 

rows
 

of
 

the
 

n × p
 

data
 

matrix
 

X
 

as
 

i. i. d. copies
 

from
 

the
 

multivariate
 

Gaussian
 

distribution
 

N(0,Σ)
 

where
 

Σ =Θ-1 .
 

We
 

fix
 

the
 

sample
 

size
 

n = 100
 

and
 

consider
 

a
 

range
 

of
 

dimensionality
 

p = 300,500
 

and
 

link
 

strength
 

ρ =
0. 2,0. 3,0. 4,0. 5,

 

respectively.
 

The
 

results
 

are
 

summarized
 

in
 

Table
 

1.
 

In
 

terms
 

of
 

avgcov
 

and
 

avglen,
 

it
 

is
 

clear
 

that
 

our
 

proposed
 

S-NL
 

method
 

outperforms
 

other
 

alternative
 

methods
 

with
 

higher
 

avgcov
 

and
 

shorter
 

avglen
 

in
 

most
 

settings.
 

Although
 

the
 

avglen
 

over
 

S c
 

may
 

be
 

a
 

little
 

longer
 

in
 

some
 

cases,
 

it
 

is
 

amazing
 

that
 

the
 

coverage
 

probabilities
 

in
 

S
 

approach
 

the
 

nominal
 

coverage
 

95% .
 

On
 

the
 

other
 

hand,
 

the
 

advantage
 

becomes
 

more
 

evident
 

as
 

p
 

and
 

ρ
 

increase.
 

Compared
 

with
 

individual
 

confidence
 

intervals,
 

simultaneous
 

confidence
 

intervals
 

have
 

longer
 

lengths
 

and
 

lower
 

coverage
 

probabilities.
 

This
 

is
 

reasonable
 

because
 

multiplicity
 

adjustment
 

damages
 

partial
 

accuracy
 

which
 

is
 

inevitable.

Table
 

1　 Averaged
 

coverage
 

probabilities
 

and
 

lengths
 

over
 

the
 

support
 

set
 

S
 

and
 

its
 

complement
 

Sc
 

in
 

Section
 

3. 1

ρ Method
p = 300 p = 500

S Sc S Sc

Avgcov Avglen Avgcov Avglen Avgcov Avglen Avgcov Avglen
0. 2 S-NL 0. 932 0. 824 0. 931 0. 793 0. 925 0. 743 0. 945 0. 841

S-GL 0. 788 0. 798 0. 942 0. 812 0. 893 0. 751 0. 953 0. 847
I-NL 0. 955 0. 424 0. 952 0. 375 0. 954 0. 428 0. 958 0. 373
I-GL 0. 956 0. 425 0. 976 0. 372 0. 953 0. 427 0. 981 0. 375

0. 3 S-NL 0. 919 0. 726 0. 935 0. 712 0. 916 0. 722 0. 943 0. 833
S-GL 0. 752 0. 740 0. 938 0. 802 0. 846 0. 745 0. 944 0. 816
I-NL 0. 931 0. 399 0. 963 0. 349 0. 927 0. 396 0. 962 0. 346
I-GL 0. 899 0. 400 0. 987 0. 349 0. 846 0. 402 0. 992 0. 351

0. 4 S-NL 0. 912 0. 713 0. 934 0. 804 0. 873 0. 699 0. 939 0. 821
S-GL 0. 725 0. 721 0. 936 0. 798 0. 623 0. 704 0. 936 0. 813
I-NL 0. 932 0. 399 0. 963 0. 349 0. 895 0. 364 0. 977 0. 315
I-GL 0. 807 0. 388 0. 995 0. 333 0. 696 0. 393 0. 997 0. 338

0. 5 S-NL 0. 790 0. 498 0. 864 0. 458 0. 731 0. 256 0. 792 0. 305
S-GL 0. 598 0. 782 0. 931 0. 672 0. 425 0. 902 0. 931 0. 683
I-NL 0. 811 0. 234 0. 890 0. 214 0. 796 0. 134 0. 834 0. 153
I-GL 0. 642 0. 422 0. 997 0. 353 0. 538 0. 454 0. 990 0. 381

3. 2 　 Numerical
 

example
 

2:
 

nonband
 

structure
For

 

the
 

second
 

numerical
 

example,
 

we
 

use
 

the
 

same
 

setup
 

as
 

simulation
 

example
 

1
 

in
 

Ref. [16]
 

to
 

test
 

the
 

performance
 

of
 

S-NL
 

in
 

more
 

general
 

cases.
 

We
 

generate
 

the
 

precision
 

matrix
 

in
 

two
 

steps.
 

First,
 

we
 

create
 

a
 

band
 

matrix
 

Θ0
 the

 

same
 

as
 

that
 

in
 

Section
 

3. 1.
 

Second,
 

we
 

randomly
 

permute
 

the
 

rows
 

and
 

columns
 

of
 

Θ0
 to

 

obtain
 

the
 

precision
 

matrix
 

Θ.
 

The
 

final
 

precision
 

matrix
 

Θ
 

no
 

longer
 

has
 

the
 

band
 

structure.
 

Then
 

we
 

sample
 

the
 

rows
 

of
 

the
 

n × p
 

data
 

matrix
 

X
 

as
 

i. i. d.
 

copies
 

from
 

the
 

multivariate
 

Gaussian
 

distribution
 

N(0,Σ)
 

where
 

Σ = Θ-1 .
 

Throughout
 

this
 

simulation,
 

we
 

fix
 

the
 

sample
 

size
 

n = 200,
 

dimensionality
 

p = 1 000
 

and
 

consider
 

a
 

range
 

of
 

ρ = 0. 2,0. 3,0. 4,0. 5.
 

Simulation
 

results
 

summarized
 

in
 

Table
 

2
 

also
 

illustrate
 

that
 

our
 

method
 

can
 

achieve
 

the
 

preassigned
 

significance
 

level
 

asymptotically
 

and
 

behaves
 

better
 

than
 

others
 

in
 

most
 

cases.
 

Moreover,
 

we
 

can
 

see
 

our
 

method
 

is
 

very
 

robust
 

especially
 

in
 

large
 

ρ.
 

4　 Discussions

In
 

this
 

paper,
 

we
 

apply
 

bootstrap-assisted
 

procedure
 

to
 

make
 

valid
 

simultaneous
 

inference
 

for
 

high-dimensional
 

precision
 

matrix
 

based
 

on
 

the
 

recent
 

de-biased
 

nodewise
 

Lasso
 

estimator.
 

In
 

addition,
 

we
 

summary
 

a
 

unified
 

framework
 

to
 

perform
 

simultaneous
 

confidence
 

intervals
 

for
 

high-
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　 　 　 　Table
 

2　 Averaged
 

coverage
 

probabilities
 

and
 

lengths
 

over
 

the
 

support
 

set
 

S
 

and
 

its
 

complement
 

Sc
 

in
 

Section
 

3. 2

ρ Method
S Sc

Avgcov Avglen Avgcov Avglen
0. 2 S-NL 0. 936

 

0. 458 0. 939 0. 615
S-GL 0. 925 0. 463 0. 935 0. 623
I-NL 0. 954 0. 291 0. 969 0. 252
I-GL 0. 941 0. 292 0. 988 0. 254

0. 3 S-NL 0. 910 0. 602 0. 936 0. 611
S-GL 0. 831 0. 601 0. 932 0. 613
I-NL 0. 936 0. 283 0. 964 0. 249
I-GL 0. 859 0. 284 0. 991 0. 249

0. 4 S-NL 0. 908 0. 587 0. 942 0. 601
S-GL 0. 458 0. 598 0. 943 0. 597
I-NL 0. 933 0. 264 0. 975 0. 232
I-GL 0. 692 0. 279 0. 996 0. 246

0. 5 S-NL 0. 825 0. 324 0. 856 0. 258
S-GL 0. 227 0. 269 0. 883 0. 236
I-NL 0. 864 0. 152 0. 899 0. 134
I-GL 0. 321 0. 129 0. 991 0. 101

dimensional
 

precision
 

matrix
 

under
 

the
 

sub-Gaussian
 

case.
 

As
 

long
 

as
 

some
 

estimation
 

effects
 

are
 

satisfied,
 

our
 

procedure
 

can
 

focus
 

on
 

different
 

precision
 

matrix
 

estimation
 

methods
 

which
 

owns
 

great
 

flexibility.
 

Further,
 

this
 

method
 

can
 

be
 

expended
 

to
 

more
 

general
 

settings,
 

such
 

as
 

functional
 

graphical
 

model
 

where
 

the
 

samples
 

are
 

consisted
 

of
 

functional
 

data.
 

We
 

leave
 

this
 

problem
 

for
 

further
 

investigations.
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Appendix
A. 1　 Preliminaries

We
 

first
 

provide
 

a
 

brief
 

overview
 

of
 

the
 

results
 

for
 

the
 

nodewise
 

Lasso
 

and
 

Gaussian
 

approximation
 

in
 

the
 

following
 

Propositions.
 

Proposition
 

A. 1 　 ( Theorem
 

1
 

of
 

Ref. [ 4],
 

Asymptotic
 

normality ) .
 

Suppose
 

that
 

Θ︿
 

is
 

the
 

nodewise
 

Lasso
 

estimator
 

with
 

regularization
 

parameters
 

λ j
log

 

p
n

 

uniformly
 

in
 

j.
 

Then,
 

for
 

every
 

( i,j) ∈ E
 

and
 

z ∈ ℝ ,
 

it
 

holds

771
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lim
n→∞

sup
Θ∈ (s)

n(Θ︶ ij -Θij) / σ ij ≤ z( ) - Φ(z) = 0.

　 　 Proposition
 

A. 2
 

( Lemma
 

2
 

of
 

Ref. [4],
 

Variance
 

estimation ).
 

Suppose
 

that
 

lim
n→∞

log4(p ∨

n) / n1-􀆠 = 0
 

for
 

some
 

􀆠 > 0.
 

Let
 

Θ︿
 

be
 

the
 

nodewise
 

Lasso
 

estimator
 

and
 

let
 

λ j ≥ cτ 　 logp / n
 

uniformly
 

in
 

j
 

for
 

some
 

τ,c > 0.
 

Let
 

σ︿ 2
ij =∑

n

k = 1
(Θ︿ T

i X(k)XT
(k)Θ

︿
j)2 / n -

Θ
︿

2
ij .

 

Then
 

for
 

all
 

η > 0

lim
n→∞

sup
Θ∈ ( s)

max
i,j = 1,…,p

σ︿ 2
ij - σ2

ij ≥ η( ) = 0.

　 　 Proposition
 

A. 3 　 ( Corollary
 

2. 1
 

of
 

Ref.
[9],

 

Gaussian
 

approximation) 　 Let
 

xi = (xi1,…,

xip) T ∈ ℝ p,X ∶= (X1,…,Xp) ′ ∶= 1
n
∑

n

i = 1
xi,T0 ∶=

max1≤j≤pX j
 and

 

yi = (yi1,…,yip) T ∈ ℝ p,Y ∶=

(Y1,…,Yp) ′∶=
1
n
∑

n

i = 1
yi

 is
 

the
 

Gaussian
 

analog
 

of
 

X
 

in
 

the
 

sense
 

of
 

sharing
 

the
 

same
 

mean
 

and
 

covariance
 

matrix,
 

namely
 

E[X] = E[Y] = 0
 

and
 

E[XX′] = E[YY′] = n -1∑
n

i = 1
E[xix′i] .

 

Define
 

the
 

Gaussian
 

analog
 

Z0
 of

 

T0
 as

 

the
 

maximum
 

coordinate
 

of
 

vector
 

Y:Z0∶=max
1≤j≤n

Y j .
 

Let
 

Bn ≥ 1
 

be
 

a
 

sequence
 

of
 

constants
 

and
 

lim
n→∞

Bn = ∞ .
 

Suppose
 

that
 

there
 

exist
 

constants
 

c1 > 0,
 

C1 > 0,
 

c2 > 0
 

and
 

C2 > 0
 

such
 

that
 

the
 

following
 

condition
 

(E. 1)
 

is
 

satisfied:

c1 ≤ ∑
n

i = 1
x2
ij / n ≤ C1,

max
r = 1,2

∑
n

i = 1
( | xij | 2+r / Br

n) / n + (exp( | xij | / Bn))

≤ 4,

and
 

B4
n(log(pn)) 7 / n ≤ C2n

-c2 .
 

Then
 

there
 

exist
 

constants
 

c > 0
 

and
 

C > 0
 

depending
 

only
 

on
 

c1,C1,
c2,

 

and
 

C2
 such

 

that
ρ∶=sup

t∈ℝ
P(T0 ≤ t) - P(Z0 ≤ t) ≤ Cn -c → 0.

A. 2　 Proof
 

of
 

Theorem
 

2. 1
Without

 

loss
 

of
 

generality,
 

we
 

set
 

E = [p] ×
[p] .

 

For
 

any
 

( j,k) ∈ E,
 

define

TE =∶ max
(j,k)∈E

n(Θ︶ jk -Θjk),WE = ∶ max
(j,k)∈E

∑
n

i = 1
Z︿ ijkei / n,

T0 =∶ max
( j,k)∈E

∑
n

i = 1
Z ijk / n ,W0 =∶ max

( j,k)∈E
∑

n

i = 1
Z ijkei / n ,

where
 

Z︿ ijk =Θ
︿ T

j X( i)XT
( i)Θ

︿
k -Θ

︿
jk

 and
 

Z ijk =ΘT
j X( i)XT

( i)

Θk - Θ jk .
 

By
 

following
 

the
 

same
 

arguments
 

in
 

the
 

proof
 

of
 

Lemma
 

3
 

and
 

Lemma
 

4,
 

we
 

have
(c1-α,W ≤ c(1-α+ξ2),W0

+ ξ1) ≥ 1 - ξ2,
(c1-α,W0

≤ c1-α+π(ν),W) ≥ 1 - (Γ > ν) .
　 　 Let

 

π (ν) ∶= C2ν 1 / 3(1 ∨ log( | E | / ν)) 2 / 3,
κ 1(ν) = c1-α-ξ2-π(ν),Y0

 and
 

κ 2(ν) = c1-α+ξ2+π(ν),Y0
.

 

Then
 

by
 

Lemma
 

A. 1,
 

A. 3
 

and
 

invoking
 

the
 

similar
 

proof
 

of
 

Corollary
 

3. 1
 

in
 

Ref. [9],
 

we
 

have
 

sup
α∈(0,1)

| (TE < c1-α,WE
) - (1 - α) | ≤ sup

α∈(0,1)
((TE <

c1-α,WE
) (T0 < c1-α,Y0

)) ≤ (κ 1(ν) - 2ξ 1 < T0

≤ κ2(ν) + 2ξ1) + 2 (Γ > ν) + 3ξ2 ≤ (κ1(ν) -
2ξ1 < Y0 ≤ κ2(ν) + 2ξ1) + 2 (Γ > ν) + 3ξ2 +
2Cn -c ≤ 2π(ν) + 2 (Γ > ν) + 2Cn -c + C2ξ 1
　 1 ∨ log( | E | / ξ 1) + 5ξ 2 ≤ o(1),

 

where
 

A B
 

denotes
 

their
 

symmetric
 

difference,
 

that
 

is,
 

A B =
(A \B) ∪ (B \A) .

 

Thus
 

we
 

get
lim
n→∞

sup
Θ∈ (s)

sup
α∈(0,1)

( n‖Θ︶ E -ΘE‖max ≤ c1-α,E) -
(1 - α) = 0,

which
 

conclude
 

the
 

proof.
 

A. 3　 Proof
 

of
 

Theorem
 

2. 3
To

 

enhance
 

the
 

readability,
 

we
 

split
 

the
 

proof
 

into
 

three
 

steps
 

by
 

providing
 

the
 

bound
 

on
 

bias
 

term,
 

establishing
 

asymptotic
 

normality
 

and
 

verifying
 

the
 

variance
 

consistency.
 

Step
 

1
　 Θ︶ - Θ =Θ︿ -Θ︿ T(Σ︿ Θ︿ - Ip) - Θ

= - Θ(Σ︿ - Σ)Θ - (ΘΣ︿ - Ip)(Θ︿ - Θ) -

　 (Θ︿ - Θ) T(Σ︿ Θ︿ - Ip)
∶= Z + Δ1 + Δ2 .

For
 

the
 

first
 

part
 

bias,
 

we
 

have
 

‖Δ1‖max = ‖(ΘΣ︿ -

Ip)(Θ︿ - Θ)‖max ≤ ‖ΘΣ︿ - Ip)‖max‖Θ︿ - Θ‖1 =
Op(slogp / n),

 

which
 

is
 

the
 

result
 

of
 

event
 

H
 

and
 

max
k∈[p]

‖Σ︿ Θk - ek‖∞ ≤ ‖ Σ︿ - Σ‖max‖ Θk‖1 =

Op( logp / n)
 

by
 

Lemma
 

6.
 

For
 

the
 

second
 

part
 

bias,
 

we
 

have
 

‖Δ2‖max = ‖(Θ︿ - Θ)T(Σ︿ Θ︿ - Ip)‖max ≤
‖Σ︿Θ︿ - Ip‖max‖Θ︿ -Θ‖1 = Op(slogp / n).

 

Therefore,
 

by
 

condition
 

A2,
 

we
 

have
 

bias
 

term
 

‖Δ‖max =

‖ n (Δ1 + Δ2)‖max ≤ n (‖Δ1‖max +

‖Δ2‖max) = Op( slogp / n ) = op(1),
 

which
 

complete
 

the
 

first
 

step
 

proof.
Step

 

2　
 

The
 

proof
 

is
 

the
 

direct
 

conclusion
 

of
 

Theorem
 

1
 

of
 

Ref. [4].
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Step
 

3 　 The
 

proof
 

is
 

the
 

direct
 

conclusion
 

of
 

Lemma
 

2
 

of
 

Ref. [4].
 

The
 

subsequent
 

proof
 

is
 

similar
 

to
 

Theorem
 

2. 1,
 

thus
 

we
 

omit
 

the
 

details.
 

A. 4　 Lemmas
 

and
 

their
 

proofs
The

 

following
 

lemmas
 

will
 

be
 

used
 

in
 

the
 

proof
 

of
 

the
 

main
 

theorem.
 

Lemma
 

A. 1　 Assume
 

that
 

conditions
 

(A1)–
(A4)

 

hold.
 

Then
 

for
 

any
 

E ⊆ [p] × [p]
 

we
 

have

sup
t∈ℝ

max
( j,k)∈E

∑
n

i = 1
Z ijk / n ≤ t( ) -

max
( j,k)∈E

∑
n

i = 1
Yijk / n ≤ t( ) ≤ C0n

-c0,

where
 

{Yijk}(j,k)∈E
 are

 

Gaussian
 

analogs
 

of
 

{Zijk}(j,k)∈E

 in
 

the
 

sense
 

of
 

sharing
 

the
 

same
 

mean
 

and
 

covariance
 

for
 

i = 1,2,…,n.
Proof 　 The

 

proof
 

is
 

based
 

upon
 

verifying
 

conditions
 

from
 

Corollary
 

2. 1
 

of
 

Ref. [ 9].
 

To
 

be
 

concrete,
 

we
 

require
 

to
 

prove
 

the
 

following
 

condition
 

(E. 1).

c1 ≤ ∑
n

i = 1
Z2

ijk / n ≤ C1,

max
r = 1,2

∑
n

i = 1
( | Z ijk | 2+r / Br

n) / n +

(exp( | Z ijk | / Bn)) ≤ 4,
where

 

Bn ≥ 1
 

be
 

a
 

sequence
 

of
 

constants
 

and
 

lim
n→∞

Bn

= ∞ .
 

By
 

sub-Gaussian
 

setting
 

and
 

condition
 

A1,
 

we
 

have
 

‖Θ‖2 ≤ λmax(Θ) ≤ L
 

and
 

K = O(1) .
 

Then
 

invoking
 

Lemma
 

8,
 

we
 

have
 

a
 

moment
 

bound
 

for
 

r ≥ 2, | Z ijk | r ≤ (2L2K2) rr! / 2.
 

Then
 

for
 

r = 2,
 

there
 

exist
 

c1
 and

 

C1
 such

 

that
 

c1 ≤ Z2
ijk ≤ C1 .

 

On
 

the
 

other
 

hand,
 

exp(Z ijk / Bn) = 1 + ∑
∞

r = 1

| Z ijk | r

Br
nr!

≤ 1 + ∑
∞

r = 1

(C′) rr!
2Br

nr!
≤ 1 + ∑

∞

r = 1
(C′
Bn

) r < ∞ ,
 

where
 

we
 

use
 

the
 

fact
 

that
 

Bn
 is

 

some
 

sufficiently
 

large
 

constant.
 

Thus
 

we
 

have
max
r = 1,2

| Z ijk | 2+r / Br
n + exp( | Z ijk | / Bn) ≤ 4,

which
 

conclude
 

the
 

proof.
 

Lemma
 

A. 2 　 Let
 

V
 

and
 

Y
 

be
 

centered
 

Gaussian
 

random
 

vectors
 

in
 

ℝ p
 

with
 

covariance
 

matrices
 

Σ V
 

and
 

Σ Y
 

respectively.
 

Suppose
 

that
 

there
 

are
 

some
 

constants
 

0 < c1 < C1
 such

 

that
 

c1 ≤ΣY
jj ≤

C1
 for

 

all
 

1 ≤ j≤ p.
 

Then
 

there
 

exists
 

a
 

constant
 

C >

0
 

depending
 

only
 

on
 

c1
 and

 

C1
 such

 

that
sup
t∈ℝ

max
1≤j≤p

V j ≤ t( ) - max
1≤j≤p

Y j ≤ t( )

≤ CΔ1 / 3
0 (1 ∨ log(p / Δ0)) 2 / 3,

where
 

Δ0 ∶= max
1≤j,k≤p

| ΣV
jk -ΣY

jk | .
 

Proof　 The
 

proof
 

is
 

the
 

same
 

as
 

Lemma
 

3. 1
 

of
 

Ref. [9]
 

Lemma
 

A. 3 　 Suppose
 

that
 

there
 

are
 

some
 

constants
 

0 < c1 < C1
 such

 

that
 

c1 ≤ ∑
n

i = 1
EZ2

ijk / n ≤

C1
 for

 

all
 

( j,k) ∈ E.
 

Let
 

Y0 = max
( j,k)∈E

∑
n

i = 1
Yijk /

　 n ,
 

where
 

Yijk
 is

 

the
 

same
 

with
 

that
 

in
 

Lemma
 

1.
 

Then
 

for
 

every
 

α ∈ (0,1),
(c1-α,W0

≤ c1-α+π(ν),Y0
) ≥ 1 - (Γ > ν),

(c1-α,Y0
≤ c1-α+π(ν),W0

) ≥ 1 - (Γ > ν),
where

 

π (ν): = C2ν1 / 3(1 ∨ log( | E | / ν)) 2 / 3 .
 

Proof　 Recall
 

that
 

Γ = max
( j,k)∈E

| ∑
n

i = 1
Z ijkZ ij′k′ / n -

∑
n

i = 1
 

(Z ijkZ ij′k′) / n | .
 

By
 

Lemma
 

A. 2,
 

on
 

the
 

event
 

{X:Γ ≤ ν},
 

we
 

have
 

| (Y0 ≤ t) - (W0 ≤ t | X)
| ≤ π(ν),

 

for
 

all
 

t ∈ ℝ .
 

Thus
 

condition
 

on
 

this
 

event
 

we
 

have
 

(W0 ≤ c1-α+π(ν),Y0
) ≥ (c1-α+π(ν),Y0

) -
π(ν) ≥α + π(ν) - π(ν) = α,

 

which
 

conclude
 

the
 

first
 

proof.
 

The
 

second
 

claim
 

follows
 

similarly.
 

Lemma
 

A. 4　 Assume
 

that
 

conditions
 

(A1) -
(A4)

 

hold.
 

Then
 

for
 

any
 

( j,k) ∈ E
 

we
 

have
( | TE - T0 | > ξ1) < ξ2,

( e( | WE - W0 | > ξ1) > ξ2) < ξ2,
where

 

ξ1 = o(1),
 

ξ2 = o(1)
 

and
 

ξ1 logp / n + ξ2 ≤
C2n

-c2 .
 

Proof
Bounds

 

for　 | TE - T0 | :
 

Recall
 

that
| TE - T0 | ≤ max

( j,k)∈E
| Δ jk |

It
 

follows
 

from
 

Theorem
 

2. 1
 

that

max
( j,k)∈E

| Δ jk | ≥ O slog
 

p
n( ){ } ≤ o (1),

where
 

ξ1 = O( slogp / n) = o(1)
 

and
 

ξ2 = o(1) .
 

Bounds
 

for　 | WE - W0 | :

| WE - W0 | ≤ max
( j,k)∈E

| ∑
n

i = 1
(Z︿ ijk - Z ijk)ei / n | .

Let
 

An =| ∑
n

i = 1
(Z︿ ijk - Z ijk)ei /

　 n | ,
 

we
 

have

(An) ≤ X e ∑
n

i = 1
(Z︿ ijk - Z ijk)ei / n[ ]

2
≤

971



中国科学院大学学报 第 38 卷

X ∑
n

i =1
(Z︿ ijk -Zijk)2 / n ≤ X ∑

n

i =1
(Z︿ ijk -Zijk)2 / n[ ] .

By
 

Lemma
 

A. 5,
 ∑

n

i = 1
(Z︿ ijk - Zijk)2 / n = o(1),

 

we
 

directly
 

get
 

(An) ≤ o(1).
 

Thus,
 

we
 

have
 

An = o(1)
 

by
 

applying
 

Markov’s
 

inequality.
 

Further,
 

there
 

exist
 

ξ1 = o(1)
 

and
 

ξ2 = o(1)
 

such
 

that
 

(| WE - W0 | >
ξ1) < ξ2 .

 

By
 

Markov’s
 

inequality,
 

we
 

have
( e( | WE - W0 | > ξ1) > ξ2) ≤

[ e( | WE - W0 | > ξ1)] / ξ2 =
( | WE - W0 | > ξ1) / ξ2 ≤ ξ2

2 / ξ2 = ξ2,
which

 

conclude
 

the
 

proof.
 

Lemma
 

A. 5

max
( j,k)∈E

∑
n

i = 1
(Z︿ ijk - Z ijk) 2 / n = op(1) .

　 　 Proof

Since
 

(a-b)2 ≤2(a2 +b2),
 

we
 

have
 

max
(j,k)∈E

∑ n

i =1
(Z︿ ijk -

Zijk)2 / n = max
(j,k)∈E

∑
n

i =1
(Θ︿ T

j X(i)XT
(i)Θ

︿
k -Θ

︿
jk -ΘT

j X(i)XT
(i)Θk +

Θjk)2 / n ≤ 2 max
(j,k)∈E

[ ∑
n

i = 1
(Θ︿ T

j X(i)XT
(i) Θ

︿
k -ΘT

j X(i)XT
(i)

Θk)2 ] + 2 max
( j,k)∈E

(Θ︿ jk -Θjk) 2:= 2I1 + 2I2 .
 

For
 

the
 

first
 

part,
 

it
 

follows
 

from
 

triangle
 

inequality
 

that
 

I1 ≤ max
(j,k)∈E

∑
n

i = 1
( Θ︿ T

j X(i)XT
(i)( Θ︿ k - Θk))2 / n +

max
(j,k)∈E

∑
n

i =1
(( Θ︿ j - Θj)TX(i)XT

(i) Θk)2 / n.
 

Since
 

‖∑
n

i =1
X(i)XT

(i)Θ
︿
jΘ

︿ T
j X(i)XT

(i) / n‖max ≤
 

max
i∈[n]

‖X(i)XT
(i)‖max

 

max
j∈[p]

∑
n

i =1
Θ︿ T

j X(i)XT
(i)Θ

︿
j / n ≤Op(log(np))

 

max
j∈[p]

‖Θ︿ j‖1‖Σ︿

Θ︿ j‖∞
 ≤Op(log(np))max

j∈[p]
(‖Θj‖1 +‖Θ︿ j -Θj‖1)(1 +

Op(
　 logp / n)) = Op(log(np)),

 

we
 

have
 

max
(j,k)∈E

∑
n

i =1
 

(Θ︿ T
j X(i)XT

(i)(Θ
︿
k -Θk))2 / n = max

(j,k)∈E
(Θ︿ k -Θk)T∑

n

i =1
X(i)XT

(i)

Θ︿ j
 Θ︿ T

j X(i)XT
(i)( Θ︿ k - Θk) / n ≤ max

k∈[p]
‖ Θ︿ k -

Θk‖2
2Op(log(np))= Op(s2logplog(np) / n)= op(1).

 

For
 

the
 

second
 

part,
 

it
 

is
 

obvious
 

that
| I2 | ≤ Op(logp / n),

which
 

is
 

a
 

direct
 

result
 

of
 

event
 

H.
 

Combining
 

them
 

together,
 

we
 

conclude
 

=
Op( s2 logplog(np) / n) = op(1) .

 

Lemma
 

A. 6　 Assume
 

that
 

conditions
 

(A1) -

(A4)
 

hold.
 

Let

‖Σ︿ - Σ‖max ≤ Op( logp / n ) .
　 　 Proof　 The

 

proof
 

is
 

the
 

same
 

as
 

Lemma
 

L. 3
 

of
 

Ref. [13],
 

which
 

follows
 

by
 

invoking
 

the
 

inequality
XiX j ψ1

≤ 2 Xi ψ2
X j ψ2

≤ 2c -2

and
 

Proposition
 

5. 16
 

in
 

Ref. [17]
 

and
 

the
 

union
 

bound.
 

Lemma
 

A. 7 　 Let
 

{Xi} n
i = 1

 be
 

identically
 

p -
dimensional

 

sub-Gaussian
 

vectors
 

with
 

max
i∈[n],j∈[p]

‖Xij‖ψ2
= C.

 

Then
 

we
 

have

max
i∈[n]

‖X( i)XT
( i) ‖max < Op(log(np)) .

　 　 Proof　 The
 

proof
 

is
 

the
 

same
 

as
 

Lemma
 

L. 5
 

of
 

Ref. [13].
 

It
 

follows
 

from
 

the
 

fact
 

max
i∈[n]

X(i)XT
(i) max =

max
i∈[n]

Xi
2
∞

 and
 

(5. 10)
 

in
 

Ref. [17]
 

with
 

the
 

union
 

bound.
 

Lemma
 

A. 8 　 Let
 

α,β ∈ ℝ p
 

such
 

that
 

‖α‖2 ≤ M,‖β‖2 ≤ M.
 

Let
 

Xi
 satisfy

 

the
 

sub-
Gaussian

 

setting
 

with
 

a
 

positive
 

constant
 

K.
 

Then
 

for
 

any
 

r ≥ 2,
 

we
 

have
| αTX( i)XT

( i)β - αTX( i)XT
( i)β | r /

(2M2K2) r ≤ r! / 2.
　 　 Proof 　 The

 

proof
 

is
 

the
 

same
 

as
 

Lemma
 

5
 

of
 

Ref. [3].
 

Since
 

‖α‖2 ≤M,‖β‖2 ≤M
 

and
 

sub-
Gaussian

 

assumption
 

with
 

a
 

constant
 

K,
 

we
 

obtain

e XT
( i)α

2 / (MK) 2

≤ 2
 

and
 

e XT
( i)β

2 / (MK) 2

≤ 2.
By

 

the
 

inequality
 

ab ≤ a2 / 2 + b2 / 2
 

(for
 

any
 

a,b∈
ℝ )

 

and
 

Cauchy-Schwarz
 

inequality
 

we
 

have

e αTX(i)X
T
(i)β / (MK)2

≤ e XT
(i)α

2 / (MK)2 / 2e XT
(i)β

2 / (MK)2 / 2 ≤

{ e XT
( i)α

2 / (MK) 2

} 1 / 2{ e XT
( i)β

2 / (MK) 2

} 1 / 2 ≤ 2.
By

 

the
 

Taylor
 

expansion,
 

we
 

have
 

the
 

inequality

1 + 1
r!

αTX( i)XT
( i)β r / (MK) 2r ≤

e αTX( i)X
T
( i)β / (MK) 2

.
Next

 

it
 

follows
αTX( i)XT

( i)β - αTX( i)XT
( i)β r / (MK) 2r ≤

2r-1 αTX( i)XT
( i)β r / (MK) 2r ≤

2r-1r! e αTX(i)X
T
(i)β / (MK)2

- 1( ) = 2r-1r! = r!
2

2r .

Therefore,
 

we
 

have

αTX(i)XT
(i)β - αTX(i)XT

(i)β r / (2M2K2) r ≤ r!
2
.
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