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Abstract Precision matrix inference is of fundamental importance nowadays in high-dimensional
data analysis for measuring conditional dependence. Despite the fast growing literature, developing
approaches to make simultaneous inference for precision matrix with low computational cost is still in
urgent need. In this paper, we apply bootstrap-assisted procedure to conduct simultaneous inference
for high-dimensional precision matrix based on the recent de-biased nodewise Lasso estimator, which
does not require the irrepresentability condition and is easy to implement with low computational
cost. Furthermore, we summary a unified framework to perform simultaneous confidence intervals for
high-dimensional precision matrix under the sub-Gaussian case. We show that as long as some
precision matrix estimation effects are satisfied, our procedure can focus on different precision matrix
estimation methods which owns great flexibility. Besides, distinct from earlier Bonferroni-Holm
procedure, this bootstrap method is asymptotically nonconservative. Both numerical results confirm
the theoretical results and computational advantage of our method.
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Nowadays, high-dimensional data which are
referred to as small n large p data, develop extremely
rapidly. Graphical models have been extensively

used as a solid tool to measure conditional
dependence structure between different variables,
ranging from genetics, proteins and brain networks
to social networks, online marketing and portfolio
optimization. It is well known that the edges of
Gaussian graphical model (GGM) are encoded by
the corresponding entries of the precision matrix'".
While most of the existing work concentrates on the
estimation and individual inference of precision
matrix, simultaneous inference methods are
generally reckoned to be more useful in practical
applications because of the valid reliability
assurance. Therefore, it is in urgent need to develop
approaches to make inference for groups of entries of
the precision matrix.

Making individual inference for the precision
matrix has been widely studied in the literature.

Ref. [2] first
conditional dependence in GGM with false discovery

advocated multiple testing for
rates control. It’ s a pity that this method can not be
applied to construct confidence intervals directly. To
address this issue, based on the so-called de-biased
or de-sparsified procedure, Refs. [3-4] designed to
remove the bias term of the initial Lasso-type
penalized estimators and achieved asymptotically
normal distribution for each entry of the precision
matrix. Difference lies in that Ref. [3] adopted
graphical Lasso as initial Lasso-type penalized
estimator but Ref. [ 4] focused on nodewise Lasso.
They both followed the way of Refs. [ 5-8] which
proposed de-biased steps for inference in high-
dimensional linear models.

While most recent studies have focused on the
individual inference in high-dimensional regime, the
simultaneous inference remains largely unexplored.
Refs. [ 9-11 ] creatively proposed multiplier bootstrap
individual confidence

method. Based on the

interval, Ref. [12]

confidence intervals via applying bootstrap scheme to

proposed  simultaneous
high-dimensional linear models. Distinct from earlier
Bonferroni-Holm procedure, this bootstrap method is
asymptotically nonconservative because it considers
the correlation among the test statistics. More
recently, Ref. [13]

inference aiming at testing the global structure of the

considered  combinatorial
graph at the cost of heavy computation and only
limited to the Gaussian case.

Motivated by these concerns, we develop a
bootstrap-assisted procedure to conduct simultaneous
inference for high-dimensional precision matrix,
based on the de-biased nodewise Lasso estimator.
Moreover, we summary a unified framework to
perform simultaneous inference for high-dimensional
precision matrix. Our method imitates Ref. [ 12] but
generalizes bootstrap-assisted scheme to graphical
models and we conclude general theory that our
method is applicative as long as precision matrix
estimation satisfies some common conditions. The
major contributions of this paper are threefold. First
of all, we develop a bootstrap-assisted procedure to
conduct simultaneous inference for high-dimensional
precision matrix, which is adaptive to the dimension
of the concerned component and considers the
dependence within the de-biased nodewise Lasso
estimators while Bonferroni-Holm procedure cannot
attain. Second, our method is easy to implement and
enjoy nice computational efficiency without loss of
accuracy. Last, we provide theoretical guarantees
for constructing simultaneous confidence intervals of
the precision matrix under a unified framework. We
prove that our simultaneous testing procedure
asymptotically achieves the preassigned significance
level even when the model is sub Gaussian and the
dimension is exponentially larger than sample size.

. .
Notations. For a vector x = (x,,-'*,x,) ,

p
denote || x || g = ( 21 AN )" the [, —norm forq €
=
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(0,00, [lx o=l {jze; # Of I, [l x]. =max

Isisp

I %, 1, (x),denote the ith row of x and x _; denote the

sub-vector without jth component. For a matrix A

P

(a;) € R™, denote A, =max 3\ | a1,
SISi=1
JA], =max >." Ta;l,|Al,, =max| a,!,
I<isp “j=1 v i v

A, =A,.(A"A)"? the matrix [, —norm, [, —

norm, elementwise maximum norm, and spectral

max

norm, respectively, where A , (A) and A  (A)
denote the minimum and maximum eigenvalues of
the given matrix A. A, denote the (i,j) -entry of A,
A; denote the jth column of A ,A ;) denote the ith row
of A,A_; denote the sub-matrix of A without the jth

column, A _; ; denote the jth column of A without its

iy
ith entry and A_, ; denote the sub-matrix of A
without the ith row and jth column. For two real

{ and {g,|, we write f, = O(g,) if

sequences {f,

there exists a constant C such that| f, | < C| g, |
holds for all n,f, =o(g,) if Ilimfn/g,l =0andf, =g,
iff, =0(g,) andg, =0(f,) .I 'Fhe sub-gaussian norm
of a random variable Z, denoted by | Z | yys 18
defined as || Z || 4, = SUp q"(E z)"". The sub-
Gaussian norm of a random vector Z is defined as
IZ | v, = Hilﬁgl | {Z,x) | vy Finally, the sub-
exponential norm of random variable Z is defined as

I Z | g, = Su]l)q_]([E Z)"". ¢, and C, be some
q=

constants independent of n and p.

1 Methodology
1.1 Model setting

Under the graphical model framework, denote
by X an n X p random design matrix with p covariates.
Assume that X has independent sub-Gaussian rows
X ;) , that is, there exists constant K such that

sup  Eexp(l @'X,, 1?/K*) < 2. (1)

acR?; |a| <1
1.2 De-biased nodewise Lasso
Characterizing the distribution of Lasso-type
estimator for precision matrix is difficult because
Lasso-type estimator is biased due to the [,
penalization. To address this problem, Refs. [3-4]
adopted de-biasing idea which is to start with

graphical Lasso or nodewise Lasso estimator and then

remove its bias. This results in de-biased estimator
generally taking the form
6-6-6'36-1).

Then we have the following estimation error

decomposition

ﬁ(@ﬂf -0,)=- ﬁ@;(s -2)0, + A,
== 2_1 (Q‘TX@)XE)@/& _@jk) +Ajk9

where 3 = X"X/n is the empirical covariance. The
first term is the main term whose covariance works
out as Var (@/X , X{,0,), while the second term
is the bias term and is

0,(slogp/( Jn).

Various estimations of @ have been offered by

controlled by

different works, but the basic insight lies in that 2]
should act as a good initial estimator. In this paper,
we adopt the de-biased nodewise Lasso proposed in
Ref. [4] to illustrate our simultaneous inference
approach due to the appealing property that de-
biased nodewise Lasso does mnot require the
irrepresentability condition and is easy to implement
with low computational cost. More general choices of
O will be introduced in Section 4. Following Ref.
[4], for eachj = 1,---,p, define the vector '}2 =
{’;j,k,k =1,,p,] #k} as

v =arg min |1 =Xyl e 2 L.
Further we let
L= (00 Vil Yo =207
=X =Xy Ay
Then the jth column of the nodewise Lasso estimator
O is defined as
O, =Iy/7;.

However, we realize that O is not unique. It
only needs to be a good estimator of ¥~ in order for
the de-biasing procedure to work. As a
consequence, our approach applies to general
precision matrix inference. By contrast, earlier
approaches applied only to de-biased graphical
Lasso, as in Ref. [3], or de-biased gnodewise
Lasso as in Ref. [4]. The only assumptions we
make on @ are the event H containing three common

conditions described in Section 1. 4.
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1.3 Simultaneous confidence intervals
We extend the idea of de-biased nodewise Lasso
estimator to construct confidence intervals for any
subsets of the entries of the precision matrix.
Specifically, we are interested in deriving the
distribution of max Jn (@jk —0,.). For convenience,

(j,k) eE
define statistic

TE=:<Lmk§1§Eﬁ(@_/k _@_,'k>- (2)
Following the idea of Refs. [9-10, 12], we use a
bootstrap-assisted scheme to make simultaneous
inference for graphical model. Let {e,}’_, be an i.1i.

of N(0,1)
independent of X,. Define the multiplier bootstrap

d.  sequence random  variables

statistic as follows

Zzijkei/ﬁ , (3)
i=1

~

- 0, independent of

We=: max
(i) < E

where Zijk = @].TXU)X(TI.) @k
{e;!7_, and E to be an arbitrary subset of [p] X
[p]. The bootstrap critical value is determined by
Ciqp =inf{t € R:P(W, <t) <1-a)f,
(4)
denoting the (1 — a) -quantile of the statistic W,,,
where P, is the probability measure induced by the
variables {e; ! 7_, with X fixed, that is, P,(W, <) =
IP(W, <l X). The core point lies in that we want
to use the quantile of the statistic W, to
asymptotically estimate the quantile of the statistic
T.. We will provide the strict theoretical proof in
Section 3.

Remark 1. 1

states that if an experimenter is testing p hypotheses

Bonferroni-Holm adjustment

on a set of data, then the statistical significance
level for each independent hypothesis separately is
1/p times what it would be if only one hypothesis
were tested. However, the bootstrap uses the
quantile of the multiplier bootstrap statistic to
asymptotically estimate the quantile of the target
statistic and takes dependence among the test
statistics into account. Thus the original method with
Bonferroni-Holm is on the conservative side, while
the bootstrap is closer to the preassigned significance

level.

1.4 A unified theory for confidence intervals

Define the parameter set

M(s)=10 e R"™:1/L < A,,(0) <
/\max(@> s L’
max |6, |, <s, 0], <C|

for some 1 = L < C. We can extend the above
conclusions to more general regime. Let @ be any
estimator of the precision matrix @ satisfying the

following event H ;
160-0],, =0, /logp/n),
1@ -0, =0,s/logp/n),
130 -1, 1| .. =0,(/logp/n),

with probability tending to one uniformly over the
parameter space M (s). In fact, event H contains
very mild conditions. As we all know, many
precision matrix estimation methods satisfy the above
conditions, such as graphical Lasso, CLIME el
SCIO ' and so on. The de-biased graphical Lasso
inference has already been proposed in Ref. [3].
Different from them, we conclude a more general
theory as long as it satisfies the event H, we can
obtain simultaneous confidence intervals honestly.
Besides, our theory applies to sub-Gaussian case.

Theoretical properties will be provided in the

following section.

2 Theoretical properties

Before giving the theoretical properties, we list

two technical conditions.

(A1) Assume that slogp/ +/n =o(1).
(A2) Assume that B>(log(pn))’/n < C,n "

where B, = 1 be a sequence of constants and lim

n—o

’

B, = » , and ¢, and C, are some positive constants.
(Lemma 1 of Ref. [4])
Consider the sub-Gaussian model and let @ be the

Proposition 2. 1

nodewise Lasso estimator with A; = +/logp/n
uniformly inj. Then for any (j,k) € [p] x[p], we

have

(0, -0,)=-0/(3-3)0, +4,,
where A, =—/n{ (0-0)"(3 6,-¢,)+(0,-0,)"
(30—} and
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' P LA =0 slogp 0 precision matrix inference.

im su max = =

moenty | Gb et Jn Theorem 2.3  Assume that event H holds.

Furthermore, define the variance a'jzk = Var( @J.TX X
0,). If condition (Al) holds, we have

hmosup | P(f(@ -0, )/O’k <z) -
D(z) | =

2
where o,

;(@.;LOXL) 6,)*/n - 0 is a

consistent estimator of a'jz,c.

Based on the asymptotic normality properties
established in Proposition 2.1, we have the
following simultaneous confidence intervals for
multiple entries ©,,.

Theorem 2.1 Assume that conditions ( Al)-

(A2) hold. Then for any E € [p] X [p], we have
P10, -0, 1| < ciy) -
(1-a)|=0

where @, denotes the entries of @ with indices in E.

lim sup su
n—o@eM(s)ae (0,

Theorem 2. 1 states that we can approximate the
(1 = a )-quantile of max, Jnl @jk -0, 1 by (1 -
« ) -quantile of the multiplier bootstrap statistic W,
consistently. Note that although we cannot compute
the quantile of W, analytically, we can obtain it via
This result

Monte Carlo simulations in practice.
derives the simultaneous confidence intervals for ©,
as: @.k *c_, ,/f where (j,k) € E. As discussed
in Ref. [9],

In contrast with the earlier Bonferroni

our method applies to high-dimensional
situation.
simultaneous confidence intervals, our bootstrap-
assisted scheme is asymptotically nonconservative
and can work for arbitrary subset E.

Next, we extend the above theory to more
general case and conclude the unified theory for
precision matrix inference.

Theorem 2. 2
Then we have

lim sup sup [P || @, =6, || . < i) -

n—w@eM(s)ae(
(I-a)l=0

for any £ € [p] x [p], where @, denotes the

Assume that event H holds.

entries of @ with indices in E.
Next, we extend the above theory to more

general case and conclude the unified theory for

Then we have

(A) (Individual inference)
hmosup |IP>(f(@ @k)/a <z) -
n—o @e M(s)

d(z) | =

o~

where OA'; = Z(@TX X 0,)°/n - zk is a

i=1
. . 2
consistent estimator of o ke

(B) (Simultaneous inference )

o [P 10, -6, |, <) -
(1-a)l=0
for any E € [p] X [p], where @, denotes the

lim sup su
n—e@e M(s)ae(

entries of @ with indices in E.

Theorem 2.3 presents general conclusions for
both individual and
That is,

for any estimation methods for precision matrix as

simultaneous (:onfidence

intervals. our inferential procedures work

long as the estimation effect satisfies event H.

3 Numerical studies

In this section, we investigate the finite sample
performance of the methods proposed in Section 3
and provide a comparison to simultaneous confidence
interval for de-biased graphical Lasso, denoted by S-
NL and S-GL,

numerical examples and evaluate the methods by

respectively. We now present two

estimated average coverage probabilities ( avgcov )
and average confidence interval lengths ( avglen )
over two cases; support set S and its complement S°.
For convenience, we only consider Gaussian setting.
The implementation for de-biased nodewise Lasso
and de-biased graphical Lasso are suggested by Ref.
[4]. Throughout the simulation, the level of
significance is set at @ = 0.05 and the coverage
probabilities and interval lengths calculated by
averaging over 100 simulation runs and 500 Monte
Carlo replications. For extra comparison, we also
record individual confidence intervals for de-biased
nodewise Lasso and de-biased graphical Lasso,
denoted by I-NL and I-GL, respectively.

3.1 Numerical example 1: band structure

We start with a numerical example which has
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the similar setting as that in Ref. [3]. We consider
the precision matrix @ with the band structure,

where 0, =1,0, ,,, =6

Jtl J+lj

=pforj=1,2,--- . p-1,
andzero otherwise. We sample the rows of the n X p
data matrix X as i. i. d. copies from the multivariate
Gaussian distribution N(0,3) where 3 =0~". We fix
the sample size n = 100 and consider a range of
dimensionality p = 300,500 and link strength p =
0.2,0.3,0.4,0.5, respectively. The results are
summarized in Table 1.

In terms of avgecov and avglen, it is clear that
other

outperforms

our proposed S-NL method

alternative methods with higher avgcov and shorter
avglen in most settings. Although the avglen over
S° may be a little longer in some cases, it is
in S

approach the nominal coverage 95% . On the other

amazing that the coverage probabilities

hand, the advantage becomes more evident as p

and p increase. Compared with individual

confidence intervals, simultaneous confidence
intervals have longer lengths and lower coverage

This is

multiplicity adjustment damages partial accuracy

probabilities. reasonable  because

which 1is inevitable.

Table 1 Averaged coverage probabilities and lengths over the support set S and its complement S° in Section 3. 1

p = 300 p = 500
p Method S S¢ S S¢

Avgcov Avglen Avgcov Avglen Avgcov Avglen Avgcov Avglen

0.2 S-NL 0.932 0.824 0.931 0.793 0.925 0.743 0. 945 0. 841
S-GL 0.788 0.798 0.942 0.812 0.893 0.751 0.953 0. 847

I-NL 0. 955 0.424 0.952 0.375 0.954 0. 428 0.958 0.373

I-GL 0. 956 0. 425 0.976 0.372 0.953 0. 427 0.981 0.375

0.3 S-NL 0.919 0.726 0.935 0.712 0.916 0.722 0.943 0. 833
S-GL 0.752 0. 740 0.938 0. 802 0. 846 0. 745 0.944 0.816

I-NL 0.931 0.399 0.963 0.349 0.927 0.396 0. 962 0. 346

I-GL 0. 899 0. 400 0. 987 0.349 0. 846 0. 402 0.992 0.351

0.4 S-NL 0.912 0.713 0.934 0. 804 0.873 0. 699 0.939 0.821
S-GL 0.725 0.721 0.936 0.798 0.623 0.704 0.936 0.813

I-NL 0.932 0.399 0.963 0. 349 0. 895 0.364 0.977 0.315

I-GL 0. 807 0. 388 0.995 0.333 0. 696 0.393 0.997 0.338

0.5 S-NL 0.790 0. 498 0. 864 0. 458 0.731 0.256 0.792 0. 305
S-GL 0.598 0.782 0.931 0.672 0. 425 0.902 0.931 0. 683

I-NL 0.811 0.234 0.890 0.214 0.796 0.134 0. 834 0.153

I-GL 0. 642 0.422 0.997 0.353 0.538 0. 454 0.990 0.381

3.2 Numerical example 2: nonband range of p = 0.2,0.3,0.4,0.5.

structure

For the second numerical example, we use the
same setup as simulation example 1 in Ref. [ 16] to
test the performance of S-NL in more general cases.
We generate the precision matrix in two steps. First,
we create a band matrix @, the same as that in
Section 3. 1. Second, we randomly permute the rows
and columns of @, to obtain the precision matrix @.
The final precision matrix @ no longer has the band
structure. Then we sample the rows of the n x p data
matrix X as i. i. d. copies from the multivariate
Gaussian distribution N(0,3) where 3 = @'
Throughout this simulation, we fix the sample size

n = 200, dimensionality p = 1 000 and consider a

Simulation results summarized in Table 2 also

illustrate  that our method can achieve the
preassigned significance level asymptotically and
behaves better than others in most cases. Moreover,
we can see our method is very robust especially in

large p.
4 Discussions

In this paper, we apply bootstrap-assisted
procedure to make valid simultaneous inference for
high-dimensional precision matrix based on the
recent de-biased nodewise Lasso estimator. In
addition, we summary a unified framework to

perform simultaneous confidence intervals for high-
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Table 2 Averaged coverage probabilities and
lengths over the support set S and its complement
S¢ in Section 3.2

p Method 5 ol

Avgcov Avglen Avgcov Avglen

0.2 S-NL 0. 936 0. 458 0.939 0.615
S-GL 0.925 0. 463 0.935 0.623

I-NL 0.954 0.291 0. 969 0.252

I-GL 0.941 0.292 0.988 0.254

0.3 S-NL 0.910 0. 602 0.936 0.611
S-GL 0. 831 0. 601 0.932 0.613

I-NL 0.936 0.283 0. 964 0. 249

I-GL 0. 859 0.284 0.991 0.249

0.4 S-NL 0.908 0. 587 0.942 0. 601
S-GL 0. 458 0.598 0.943 0.597

I-NL 0.933 0.264 0.975 0.232

I-GL 0. 692 0.279 0. 996 0.246

0.5 S-NL 0. 825 0.324 0. 856 0.258
S-GL 0.227 0.269 0. 883 0.236

I-NL 0. 864 0.152 0.899 0.134

I-GL 0.321 0.129 0.991 0.101

dimensional precision matrix under the sub-Gaussian
case. As long as some estimation effects are
satisfied, our procedure can focus on different
precision matrix estimation methods which owns
this method can be

great flexibility. Further,

expended to more general settings, such as
functional graphical model where the samples are
consisted of functional data. We leave this problem

for further investigations.
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( Theorem 1 of Ref. [4],
Asymptotic normality ). Suppose that O is the

Proposition A. 1

nodewise Lasso estimator with regularization
lo . o

parameters A, = uniformly in j. Then, for
n

every (1,j) € Eandz € R , it holds
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}Lrgoiup ‘P(f(@ -0,)/0; <z)-P(2)|= 0
Proposition A.2 ( Lemma 2 of Ref. [4],

Variance estimation ).

Suppose that lim log*(p V
n)/n'" = 0for some e > 0. Let O be the nodewise

v logp/n uniformly in

Lasso estimator and let A; = c7
J for some 7,¢ > 0. Let (;'\5 = z (@iTX“) (“@ ) /n -
=1

/\2
O . Then for allp > 0

lim sup ]P( max \0’ -o; =) =

n—o @e M(s)

Pr0p0Slt10n A. 3 ( Corollary 2.1 of Ref.

Let x,

p= (g,
X))’ ] i T

) = — X, =
! Y R

’yip>T € RP,Y":

[9], Gaussian approximation)

xip>T € RP,X = (Xla'“a

and y; = (y;,

max, ..

S/sp /

l n

(YY) = — Zyi is the Gaussian analog of X
Jn o=t

sense of sharing the same mean and

E[X] =E[Y] =0 and

in the

covariance matrix, namely

E[XX'] =E[YY'] = "ZE [x.x".]. Define the

Gaussian analog Z,, of T, as the maximum coordinate
of vector Y:Zj=max V. LetB,
Isj<n J

constants and limB, = . Suppose that there exist

n—o

constants ¢, > 0, C;, > 0, ¢, > Oand C, > 0 such

=1 be a sequence of

that the following condition (E. 1) is satisfied ;

n
2
= Z Ex;/n < C,,

E(l x; | >*"/B")/n + E(exp(| x; 1 /B,))

max
r=1,2721

<4,
and B!(log(pn))’/n < Cyn .
constants ¢ > 0 and C > 0 depending only on¢,,C,,
¢,, and C, such that
p3=ts;1[£) \P(T, <t) —P(Z,<t)|<Cn*—0.
A.2 Proof of Theorem 2.1

Without loss of generality, we set £ =
[pl. For any (j,k) € E, define

Then there exist

[p] X

T—i(maxf(@) @k) W—imax zzqke/[
Jk

T,=: (H}?XLZZUA/«/E W,=: max ZZ e/ In
J € [
where Zijk

=@/‘TX<L‘>X35>@A~ ‘@,-k and Z;, =0/ X, X,

0, -0,
proof of Lemma 3 and Lemma 4, we have
P(Cl—a,w = C1-a+g),W, +§1) =1- 62,
IP)(C]_M,/O S ¢ ginm ) = 1 =PI > v).
Let w (v):=Cov'?(1 V log(l E| /v))??,

K (v) = Cloat,-m(v),, and k,(v) = Cloatéyem(v), v,

By following the same arguments in the

Then by Lemma A. 1, A.3 and invoking the similar
proof of Corollary 3.1 in Ref. [9], we have LSup
I P(Ty <ciqw,) — (1 -a)l saf?oP])]P((TE <
lea,WE) (T, < cl,a‘yo)) sP(x,(v) -2, < T,
S ky(v) +26)) +2P( >v) +36, <P(x,(v) -
2%, <Y, < k,(v) +26)) +2P(I >v) +3&, +
2Cn™" = 2mw(v) +2P(I" > v) + 2Cn™° + C,¢,

1 Vieg(l El /€,) +5&, <0(1), where AOB
denotes their symmetric difference, that is, A© B =
(A\B) U (B\A). Thus we get

lim sup sup | (P || @y =0y || o < c10s) -

n—e@eM(s)ae (0,
(1-a)l=

which conclude the proof.
A.3 Proof of Theorem 2.3
To enhance the readability, we split the proof

into three steps by providing the bound on bias
term, establishing asymptotic normality and verifying

the variance consistency.

Step 1

60-0=0-0'360-1) -0
=-0(3-3)0-(0X-1)(0-0) -

(0-0)'(30-1)

=Z+A +A,.

For the first part bias, we have ||A, || ,.. = | (@f—
1)(0-0) |, <6-1)],10-0],=
0,(slogp/n) , which is the result of event H and max
elp
126, -el. < |2 -2.l06l, =

0,(logp/n ) by Lemma 6. For the second part bias,
we have [ 4, | ,.. = [(@-0)"(20-1) |
||ZA@—I I ||@—@ |, = 0,(slogp/n). Therefore,
by condition A2, we have bias term | A |

I /n(A + A) [ < nClA . +
1A, ) = 0,(slogp/ Jn) = o,(1), which
complete the first step proof.

Step 2
Theorem 1 of Ref. [4].

max

max

max

The proof is the direct conclusion of
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Step 3  The proof is the direct conclusion of
Lemma 2 of Ref. [4].
The subsequent proof is similar to Theorem

2.1, thus we omit the details.
A.4 Lemmas and their proofs
The following lemmas will be used in the proof
of the main theorem.
Lemma A.1 Assume that conditions (Al) -
(A4) hold. Then for any E € [p] X [p] we have
sup ‘HD max Zzyk/f )

(, k) ek f

( max 2 YUA/f

e

0
‘$ Con °,
(k) e E

where {Y,

i | (b ek Are Gau551an analogs of {Zijk | i) <k

in the sense of sharing the same mean and covariance
fori = 1,2,---,n.

Proof  The proof is based upon verifying
conditions from Corollary 2.1 of Ref. [9]. To be
concrete, we require to prove the following condition

(E.1).

n
2
¢ < 2 EZ,/n<C,,

i=

lE(I Z. /B /n +

ik

||E

[E(exp(l Z,|/B)) <4,

1 be a sequence of constants and limB,

n—o

ik

where B, =

= . By sub-Gaussian setting and condition A1, we
have |@ |, <A, (0) < Land K=0(1). Then

invoking Lemma 8, we have a moment bound for

max

=2,El Z, 1" < (2L’K*)'r! /2. Then forr =2,
there exist ¢, and C, such that ¢, < [EZ?.,f < C,. On
El Z, 1"
the other hand, Eexp(Z,/B,) =1+ 2 Bri;k
r=1 a

®©

(C)r c’
+ —)' < h
; 2871 ;(B") o , where

we use the fact that B, is some sufficiently large
constant. Thus we have

max E | Zy /B, +Eexp(l Z, | /B,) <4,
which conclude the proof.
Let V and Y be centered

Gaussian random vectors in R? with covariance

Lemma A.2

matrices 3" and 3" respectively. Suppose that there
are some constants 0 < ¢, < C, such that ¢, SZ; <

C,for all 1 =j<p. Then there exists a constant C >

0 depending only on ¢, and C, such that
suny\]P’(maxV <1) —P(maxY ) |

Isjsp Isjsp
Am(l V log(p/4y))*?,
where A;:= max | Elykl
I1<j,k<p

Proof The proof is the same as Lemma 3. 1 of
Ref. [9]
Lemma A.3

Suppose that there are some

constants 0 < ¢, < C, such thatc, < 2 EZ;k/n =

C, for all (j,k) € E. Let Y, = max ZYL]k/ Jn,

jlr)eE

where Y., is the same with that in Lemma 1. Then

ijk
for every « € (0,1),
P(cl—a,wo = Cl—aw(y),yo) =1-P(I >v),
P(Cl—a,yo = Cl—aw(v),wo) =1-P(I >v),

where m (v): = C,p'?(1 V log(l E| /v))*".

Z../n—

(j.k) €E P

Proof Recall thatI' = max | Z Z

2 E(Z;Z;)/n . By Lemma A.2, on the event
i=1

{X:I' <v!|,wehavel P(Y, <t) -P(W, <tl X)
| <m(v),forallt € R. Thus condition on this event
we have P (W, < cl_um(y),yo) = ]P)(c,_amo,)’yo) -
m(v) =Za+7m(v) —w(v)= «, which conclude the
first proof. The second claim follows similarly.

Lemma A.4 Assume that conditions (Al) -
(A4) hold. Then for any (j,k) € E we have

P T, -T,1 >¢&) <&,

P(P.(I Wy - Wol > 51) > 52) < fz,
where £, =0(1), & =0(1) and &,/logp/n + &, <
Czn_Cz

Proof

Bounds for | 7, — T, | : Recall that

| TE—Tol\max A,

k) ek
It follows from Theorem 2. 1 that

1
P{ max | Ajkl/()(s ng)}

(j.k) eE n

N

(1),

where &, = O(slogp/n) =0(1) and &, =o(1).
| W, - W, | .

max | Z(Z

(k) €E
n ~
> (Z,
i=1

B <y [6.[3 (2 - 200/ ]’
i=1

Bounds for

| W, - W, | < ~Zy)e/ In I

i=1

LetA, = - Zy)e/ Jn |, we have
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JZ(V,C Z,,h>/n\JrE[z<yk 7,0/n] .

By Lemma A. 5, z (Z]k

- Z,.].k)z/n = o(l), we

directly get E(A,) < o(1). Thus, we have A, = o(1)
by applying Markov’ s inequality. Further, there exist
& = o(l)and ¢, = o(1) such that P(1 W, =W, | >
&) < &,. By Markov’ s inequality, we have
P(P.(1 W, - W, | > &) > &) <
E[P.(I W, - W, | >¢) /¢, =

PO W, =W, | > &)/& < E/E =6,
which conclude the proof.

Lemma A. 5

max z (Z

(k) €k ;

Proof
Since (a-b)* <2(a® +b*), we have ex 2 -

ij

- Zy)/n=0,(1).

Zy)/n = max 2 @Xx,X,0, -0, -0'X,X. 0, +
@,kf/” S zﬁ?fp [ ; (XX, 0, ~0X,X;

0,)’ ] * 2(}2?5E(@ﬂ~ _@J_k)z:: 21, + 21,

For the first part, it follows from triangle inequality

that [, < n}}axﬂg(@;X(i)Xzi)(@k -0,))/n +
JI%EZ (6 - 0)X,X, 0)Yn Snce

[ _2 X, X, 00X, X, /n|,. < max | X, X(, |

max

maxz @TXL)XT @/n

JE[P] -
0. \01)(1Og(np))jrgg§( 1O, + 16 -0 |,)1+

n

0,(log(np)) max |16 | ¥

0,(Vlogp/n)) = 0 (log(np)), we have maxz

(k) ek £

(XX (0, -0,))/n= max (0, @)TZX” L
max | 6, -

0, OX,X( 6, ma
0, [50,(log(np)) = 0,(s’logplog(np)/n) = o,(1).

For the second part,
I I, 1 < 0,(logp/n),

which is a direct result of event H.

@k)/n <

it is obvious that

Combining them together, we conclude
2 -
0,(s logplog(np)/n) =o0,(1).

Lemma A.6 Assume that conditions (Al) -

(A4) hold. Let
||2A—2|| < 0,(Vlogp/n ).

Proof The proof is the same as Lemma L. 3 of

max

Ref. [ 13], which follows by invoking the inequality
XX, <21%], X, <2
and Proposition 5. 16 in Ref. [17] and the union
bound.
Lemma A.7 1let {X;|]_, be identically p -

i

dimensional sub-Gaussian vectors with
max || X || v, = (C. Then we have
iel[n],jelp]

max | X, X(,) || e < 0,(log(np)).
Proof The proof is the same as Lemma L. 5 of
Ref. [13]. Tt follows from the fact m‘f”jHX(i)X?i) I

max

_mfa)iHX,. |2 and (5.10) in Ref. [ 17] with the union
bound.
Lemma A.8 let @, € R’ such that

lall,<M,|B|, <M LetX, satisfy the sub-
Gaussian setting with a positive constant K. Then for
2, we have
El «'X,X,B-Ea'X X, B/
2MPK*)" < r! /2.
Proof The proof is the same as Lemma 5 of
Ref. [3]. Since ||a ||, <M, |B || , <M and sub-

Gaussian assumption with a constant K, we obtain

any r =

| X{oye Pr(mk) | X{,\8 Pr(mK)?

Ee
By the inequality ab <

<2andEe <2
a’/2 +b°/2 (for any a,b e
R ) and Cauchy-Schwarz inequality we have

\alx Y (MK)? [ XD a o2 | x5 B k)22
e (z)ﬁ (i) e (z)ﬂ <

<[Ee

| X(ye Pk ? Ly X! \2/(MK)2}

(Ee Ee 2 <0,

By the Taylor expansion, we have the inequality
1+ %[E\aTXmX?”ﬂ "/ (MK)* <
Ee \aX X BV(W\)
Next it follows
Ela'X, X{,B -Ea'X ,X|,B|"/(MK)” <
27Ela'X , X[,Bl/(MK)” <

T T 2
la'X X8 V(uK)?

27 (Ee D=2" = =2.

2

Therefore, we have

.
E|a'X, X[,8 - Ea'X, X{,B|"/ (FK) <



