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Abstract

type of Lotka-Volterra systems by certain Stratonovich white noise,

In this paper, a class of stochastic Poisson systems, arising from randomly perturbing a

are considered. We give the

sufficient conditions for the almost sure existence ( global non-explosion) and uniqueness of the

solution of the system, and further prove that the solution is positive and bounded almost surely

under the proposed conditions. Numeraical experiments are performed to verify the results.
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An ordinary differential equation system is

1]

called a Poisson system ', if it can be written in the

following form
dy(2) =B(y (1)) VH(y(1))dt, (D
where y € R",B(y) = (b;(y))

skew-symmetric matrix-valued function satisfying

is a smooth

nXn

az] jk kL(
> (B0 4 (” by + e
=1 Y,
foralli,j, k=1,

—b,()|=

N, andHls a

smooth function.

WHAT T Bir,

s Lotka-Volterra % 4t ; Stratonovich & B 0 7 2, A & &, T AL

A function C(y) is called a Casimir function of the
,if Yy VC(y)'B(y) =0
The Lotka-Volterra ( L-V) model of systems

Poisson system (1)

with n interacting components is given by

_y<b +zayy] ’
where a,

g0 (i =1,2,-
In Ref. [2],

Lotka-Volterra systems was analyzed, which can be

i:1’2,...9n, (2)

-,n) are real parameters.

the Poisson structure of a class of
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written in the form of (1) with

H(y) = ZBJ;‘ - piny;,

=1
B(Y) = (by,) s = <)
diag(y,,--,y,) Bdiag(y,,-,y,),
where (1) = (y,(1) s+, ()", B = (b;) ., s &
skew-symmetric constant matrix, andB; # 0 (i =1,
--+,n) . It is not difficult to check that (1) with
(3) can be of the form (2).
As is  well

perturbations are unavoidable and universal in real

known, however, stochastic

world.  Accordingly, there have been literature
exploring the Lotka-Volterra system (2 ) under
Gaussian white noise perturbations, which were
written in stochastic differential equations (SDEs) of

Ito6 form™>° .

For instance, Mao et al. *' showed
that the environmental noise suppresses the explosion
in the Lotka-Volterra system, i. e. , with probability
1 the solution of the stochastic L-V system exists (no
explosion in finite time) uniquely under certain non-
global Lipschitz conditions; Rudnicki and Pichér'®
analyzed the influence of various stochastic
perturbations on prey-predator systems. To the best
of our knowledge, however, there is few research on
Lotka-Volterra systems under stochastic perturbations
of Stratonovich sense, except for the work by
Khasminskii and Klebaner'” | which investigated the
long term behavior of the solution of the Lotka-
Volterra systems under small random perturbations of
Stratonovich sense on the birth and death rate.
Poisson systems under certain Stratonovich
white noises perturbations, namely the stochastic
Poisson systems, got attention in recent years, see

[ 8-11 ], where in Ref. [ 9], the

general form of stochastic Poisson systems was given

e. g. Refs.

as

dy(t) =B(y(t)) (VH,(y(t))de +

2 VH(y(1)) o dW,(1) ), (4)
r=1
where B(y) ,H,(y) are defined the same way as for
B(y) and H(y) , respectively, for the deterministic
Poisson systems (1), and H(y) (r=1,---,m) are
(W, (t),--,W (t)) is an m-

dimensional standard Wiener process defined on a

smooth functions.

complete filtered probability space, and the circle
o’ in front of dW,(t) denotes Stratonovich
stochastic differential equations.

In this paper we consider the Lotka-Volterra
systems (1) with (3) under Stratonovich white
noise perturbation, of the following form

dy(t) =B(y(t)) VH(y(t))(dt +co dW(1)),

(5)
where ¢ > 0 denotes the intensity of random noise,
and W(t) is a one-dimensional standard Wiener
process. Obviously it is a stochastic Poisson system
according to (4). The stochastic version of the
Lotka-Volterra system studied as an example in Ref.
[8] is of this form. However, it can be seen that
the coefficients of the system do not satisfy the global
Lipschitz and linear growth conditions guaranteeing
existence and uniqueness of the solution'*™'. When
transfered into its equivalent 1t6 form, the drift
coefficient is cubic, which is different from the
equations with non-global Lipschitz and non-linearly
growing coefficients considered in the Refs. [3-7],
wherefore the results regarding well-posedness of the
solutions in these literature are not applicable for this
system either. It then arises the question, whether
the system (5) with (3) has a unique solution,
which does not explode in a finite time, with
probability 1. Moreover, the definiton of H(y) in
(3) intrinsically needsy;, >0 (i=1,---,n ). Then
it is also to prove that the solution of (5) with (3)
is positive with probability 1. Up to now, to our
knowledge, no answers are available for these

questions.

1 A class of invariants of the system

We first introduce some notations. To write a
vector @ > 0 is to mean that all its components are
greater than 0. R . ={y e R".y > 0} , and we
denote the kernal of the constant matrix B by
KerB: = {x e R":Bx=0}.a A\ b; =min{a,b} ,
and we let (02,7 {7}.,,P) be a complete
probability space with the filtration {.7} ,_, satisying
the usual conditions, where the one-dimensional
Wiener process W(t) is defined.

It is not difficult to verify that
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C(y)=a,lny, + -+ +a,lny,

fory € R ", is a Carsimir function of system (5) with
(3), i.e.,VC(»)'B(y) =0(Vy € RY),
whenevera = (a,,-++,a,)" € KerB . Note that, we
do not exclude the case @ = 0.

Let T > 0,f(x,,x,) be a
binary function defined on R XR , andf € C'(R x
R ) . Suppose the solution y(t) of system (5) with
(3) is positive on [0,T]. Then f(H(y(t)),
C(y(t))) is an invariant of the system (5) with
(3) on [0,T] , where C(y) is the Casimir function

mentioned above.

Proposition 1.1

Proof By the Stratonovich chain rule, it holds
on[0,T] .
dH(y(1)) =VH(y(1))" = dy(1)

=VH(y(1))"'B(y(1)) VH(y(1))
(dt + co dW(1))=0,

where the last equality is due to skew-symmetry of
B(y) , and
dC(y(1))
=VC(y(1))" e dy (1)
= VC(y(1)) ' B(y(1)) VH(y(1)) (dt + ¢ dW(1))
= 0.
Thus
dfCH(y (1)) ,C(y(1))) =
0 f(H(y),C(y)) > dH(y (1)) + 3,f(H(y),
C(y)) = dC(y(1)) =0. O

2 Non-explosion and positiveness of
the solution

In the following, we will prove that the solution
of the system (5) with (3) is globally non-explosive
and positive almost surely. To this end, we make
the following assumptions.

Hypothesis 2.1

parametersﬁ = (BI""’B”)T’p = (pl""’p’l)T Of
the system (5) with (3), there exist a real number

Assume that for the

s € R and a vector @ € KerB such that
sB >0,
-sp ta < 0.
Theorem 2.1 Under Hypothesis 2. 1, for any
given initial value y(0) € R , there is a unique
solution y(¢) to the system (5) with (3) ont =0,

n

and the solution y(¢) will remain in R , with

probability 1.

Proof The equivalent It form of the system
(5) with (3) is

dy(t) =B(y) VH(y) (dt + cdW (1)) +

)

?5(30’)VH(J’))B(J’)VH(J’)dt- (6)
Taking the concrete expressions of B(y) and H(y)
in (3) into account, it is not difficult to see that its
coefficients are locally Lipschitz continuous, and
then it has a unique local solution y(¢) on [0,7,) ,

128 Next, we show

where 7, is the explosion time
this solution is global, i.e. , 7, =+ o almost surely.
Choose an integer k, > 0 such that every component
of y(0) belongs to [ 1/k,,k,] .
k = k,, define the stopping time
7,: =inf{t € [0,7,):y,(t) ¢ (1/k,k)

for some i =1, ,n}

on the probability space ({2, 7 P). We set inf

For each integer

? =+ o« , which corresponds to the case when for
certain k* ,y,(t) € (1/k" k") , foralli € |1,
--,n} andt € [0,7,) . This can only happen when
T, =+ o , due to continuity and construction of
y(t) on [0,7,) ",

Clearly, {7,,k =0,1,2,---} is an increasing
random sequence. Set T =A1LI£T’“ ,then7_ <7, a.
s.. Hence, to show7, =+ » a.s. andy(t) e R"
a.s. for allt = 0, we only need to prove 7, =+ o
a.s..

If this statement is not true, then there exist
real numbers T > O and & € (0,1) such that

P(ir, <T}) > e,
which implies
P({1, <T}) >eforallk =k,
since {7,,k =0,1,2,---} is an increasing random
sequence. By Hypothesis 2. 1, let
(a,,a,,",a,): =58 >0,
(dy,dy,=-,d,): =—sp +a < 0.
Now, fory > 0 we construct the function
G(y): = 2 ajy; + dlny, +d; - djln(— d]) ,
j=1

a;

d.
G(y,): =ay, +dlny, +d, - d].ln(— aj) ,
J

(7)
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We see that G(y;) (j = 1,-:-,n) are convex
functions and have minimum value O on (0, + o« ) ,

and G(y;) —+ o asy,— 0 or+ o . Therefore

G(y(r)) = 2: Gj(yj(Tk)) =
G(r(7)) = G/B) A Gk,
where y, denotes the element of y that runs beyond
(1/k,k) at the time 7, .
[0,7, A T] , according to Proposition 1.1,
G(y(1)) =sH(y(t)) +C(y(1)) +

(ol

j=1 aj

Since y(t) is positive on

is an invarint of the system on the time interval [0,
7, N T]. Then set£),: = {7, < T} , we have
G(y(0))=E[G(y(r, NT))]
= B[ 1,G(y(r, AT))]
= B[1,6(y(7,))]
> e[ G(1/k) N G(k)].

Let k— o in the above inequality, we then draw the

contradiction
G(y(0)) >+ oo.
Thus it holds 7, =+ o almost surely. (]
Remark 2.1 When the constant matrix B is

non-singular, i. e. , KerB contains only 0, the vector
a must be equal to 0, in this case, the conditions in
Hypothesis 2. 1 can be simply expressed as 8 > 0,
p >0o0rf <0, p < 0. Of course, this case only
occurs when the system is of even dimension, since
an odd-dimensional skew-symmetric matrix B must
be singular.

Remark 2.2  Under Hypothesis 2.1, the
solution y () is positive on [0, + o ) almost surely,
then f(H(y(t)),C(y(t))) given in Proposition
1.1 is a class of invariants of the system (5) with

(3) on [0, + ) .
3 Boundedness of the positive solution

Based on Theorem 2.1, we can further obtain
the boundedness of the positive solution y () .
Under Hypothesis 2.1, for

any given initial value y(0) € R " , the solution

Proposition 3.1

y(t) of the system (5) with (3) is almost surely
bounded.

Proof  According to Remark 2.2, almost

surely, the constructed function

Cr(0)= Yay () +dIn(y(0) +

dj
d—dln|-—
a,
in (7) is an invariant of the system (5) with (3) on

[0, + ) ,ie,G(y(t)) = G(y(0)). Moreover,

d,
the function G,(y;) has the minimum value Gj( - ’)

&;

which is equal to 0 on (0, + o) . Therefore
G(y (1)) =6(y(0)) -

iaj(%(t)) < G(y(0)), i.e,

JFi

ay,(t) +dIn(y (1)) +d;, -

d.
dIn(- ") < G(y(0)).
a;
Hence, y,(t) locates in the bounded compact set

ly, e Rotay, + dIny, < G(y(0)) - d; +
dIn(-d/a;)} foralli=1,--
Further, the equation of the tangent line of G, at the
2d, 2d,

NETE
a; a,

i

a, 2d, 2d,
o)
2 a. a,

i i

,n , almost surely.

point ( -

Then by the convexity of G,(y;) we obtain

a, 2d, 2d,
(0 + ) w6 (-] <
2 a, a,

i i

Gi(y,(1)) < 6(y(0)),

which implies

0 <y(1) < 206(y(0)) - dIn2]

i

forallt =0andi =1, ,n. [l
4 Numerical validations

In this section, we simulate the solutions of two
concrete models of the form (5) with (3), by the
[ 8] for

stochastic Poisson systems of the form (5), which

numerical method proposed in Ref.

was proved to be of root mean-square convergence

order 1, and reads

ey
Your =%, + B(W)

1
[VHCy, +7(y =y dr(h + e, (8)
0
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where h is the time step, AW,: = Jh{, is the
truncated Wiener process increment on the time

interval [¢,,¢,,,] , and

ga lf §$ ‘Ah ’
{,, = Ah’ if f >Ah’
-A,, if é§<-4,

where A, = /41 In(h) 1 , and ¢ is a random
variable subject to standard normal distribution. In
this way we observe the behavior of the solutions,
and validate the theoretical results on the solutions.
4.1 A three-dimensional model

Consider the three-dimensional Lotka-Volterra

system with Stratonovich white noise perturbation"*’

dy(¢) =B(y (1)) VH(y(t)) (dt +co dW(1)),

0 vy, ¥, buy,ys
B(y)=|-wy. 0  —ny],
—bvy,ys s 0

H(y) = aby, +y, + ylny, = ay; = plny;. (9)
By simple calculation one can varify that B(y)

diag(y,,y,,y;)B  diag(y,,y,,y;) with B =
0 v b
-» 0 -1], and KerB = {s,a:s, € R},
-bw 1 0

wherea = (= 1/v, — b,1)" is a basis. Then a

Casimir function of this system C(y) == 1/vlny, -

blny, + Iny,, fory € R? .
(ab’l’ - a>T,p = (0’

numerical scheme (8) to simulate this system, with

In this system, 8

- y.u)", we use the

two different groups of parameters.

2,b=—1,0=-0.5,y=1,u =
2, and choose s, = 1,s, == 3, such thats,(ab,1,
-a)=(2,1,2) > 0 and - 5,(0, - y,u) +
(= 1/, =b,1)=(-6, -2, =5) < 0. Then
the Hypothesis 2. 1 is satisfied and the function G(y)

First set a =—

= 2y, —6lny, +y, = 2lny, + 2y, — Slny, — 13 +
2278125

In . In Fig. I (a), we show one sample path

of y,,y,, and y;, respectively, it can be seen that the
solution is non-explosive, positive and bounded.
Then we set another group of parameters a =
-0.2,b=-1,0=0.5,y=-1,u=2, and choose s, =1,
5,=0.5, such that s,(ab,1,-a)=(0.2,1,0.2)>0
and =s,(0,=y,u)+s,(=1/v,-b,1)=(-1,-0.5,-1.5)
<0. Hence these parameters also meet the Hypothesis

2.1, and the function G(y) = 0.2y, — Iny, +y, -

5+/3375
4

0.5lny, + 0.2y, = 1.5lny, — 13 + In . The

sample paths of y,,y, and y, under this set of
parameters are shown in Fig. 1(b), which are also
non-explosive, positive and bounded.

In Fig. 1, we take the parameter ¢ = 0.5, and
the step size h = 107", initial value y(0) = (1.0,
1.9,0.5)" for Fig. 1 (a) and y(0) = (1.0,1.5,
0.5)" for Fig. 1(b), respectively.
4.2 A two-dimensional model

We consider a prey-predator model''’ with

random pertubation

()= (477 2) o ve- awen -

5 15
4 i
3 10 .
2 =
5 4
: MM
0 10 20 30 40 50 0 10 20 3b 40 50
4 8
3 6
2 =4
1 2
0 10 20 30 40 50 0 10 20 30 40 50
50
40
.30
=20
10
0 10 20 30 40 0 10 20 30 40 50

. 50
(@a=-2b=-1y=-05y=1u=2

t
b)a=-02,b=-1y=05y=-1u=2

Fig. 1 Sample paths of the system (9)
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[0, et o e ancon,

(10)
where H(u,v) =u — Inu + v — 2Ilnv. In this case,
B(u,v) = diag(u,v)Bdiag(u,v) with B =

-

1 .
O) ,KerB contains only 0, and 8 = (1,1)"

>0,p=(1,2)" > 0. Then the parameters satisfy
Hypothesis 2. 1, and the function G(u,v) =u - Inu
+v = 2lnv = 3 + 2In2. We use the numerical
scheme (8) withy =:(u,v) " to simulate the solution
of the system (10). As shown in Fig. 2(a) and
Fig.2(b), the solution is non-explosive, positive

and bounded.

2.0 34
3.0 1
1.6
26
1.2 22
08 1.8
1.4
0.4 1.0
0 10 20 30 40 50 0 10 20 30 40 50

(@) u !

1
(b)v

Fig.2 Sample paths of the system (10)

Here we take ¢ = 0.5, and the initial value
(u(0),v(0)) = (1.5,2.5) , the step size h =
107°.

5 Conclusion

We prove the almost sure existence ( global
non-explosion ) , uniqueness and positiveness of the
solution of a class of stochastic Poisson systems,
under certain hypothesis, via constructing a function
G(y) which is a special class of invariants of the
systems. Almost sure boundedness of the solution is
also verified. Numerical simulations give support to

the theoretical results.
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