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Abstract　 In
 

this
 

paper,
 

a
 

class
 

of
 

stochastic
 

Poisson
 

systems,
 

arising
 

from
 

randomly
 

perturbing
 

a
 

type
 

of
 

Lotka-Volterra
 

systems
 

by
 

certain
 

Stratonovich
 

white
 

noise,
 

are
 

considered.
 

We
 

give
 

the
 

sufficient
 

conditions
 

for
 

the
 

almost
 

sure
 

existence
 

( global
 

non-explosion)
 

and
 

uniqueness
 

of
 

the
 

solution
 

of
 

the
 

system,
 

and
 

further
 

prove
 

that
 

the
 

solution
 

is
 

positive
 

and
 

bounded
 

almost
 

surely
 

under
 

the
 

proposed
 

conditions.
 

Numeraical
 

experiments
 

are
 

performed
 

to
 

verify
 

the
 

results.
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一类随机泊松系统的解

王余超,
 

王丽瑾

(中国科学院大学数学科学学院,
 

北京
 

100049)

摘　 要　 考虑一类随机泊松系统,这类系统来自于对一类 Lotka-Volterra 系统进行 Stratonovich
型白噪声扰动。 给出该系统的解几乎处处存在(全局不爆发)且唯一的充分条件,并进一步证

明在这个条件下,解是几乎处处正的和有界的。 数值实验对结论进行了验证。
 

关键词　 随机泊松系统;Lotka-Volterra 系统;Stratonovich
 

型随机微分方程;不变量;不爆发
 

　 　 An
 

ordinary
 

differential
 

equation
 

system
 

is
 

called
 

a
 

Poisson
 

system[1] ,
 

if
 

it
 

can
 

be
 

written
 

in
 

the
 

following
 

form
dy( t) = B(y( t)) ΔH(y( t))dt, (1)

where
 

y ∈ ℝ n,B(y) = (bij(y)) n×n
 is

 

a
 

smooth
 

skew-symmetric
 

matrix-valued
 

function
 

satisfying
 

∑
n

l =1

􀆟bij(y)
􀆟yl

blk(y) +
􀆟bjk(y)

􀆟yl
bli(y) +

􀆟bki(y)
􀆟yl

blj(y)( ) = 0

for
 

all
 

i,j,k = 1,…,n,
 

and
 

H
 

is
 

a
 

smooth
 

function.
 

A
 

function
 

C(y)
 

is
 

called
 

a
 

Casimir
 

function
 

of
 

the
 

Poisson
 

system
 

(1),
 

if
 

∀y, ΔC(y) TB(y) = 0.
 

The
 

Lotka-Volterra
 

( L-V )
 

model
 

of
 

systems
 

with
 

n
 

interacting
 

components
 

is
 

given
 

by
 

yi
∙ = yi(bi + ∑

n

j = 1
aijy j),

 

　 i = 1,2,…,n, (2)

where
 

aij,bi( i,j = 1,2,…,n)
 

are
 

real
 

parameters.
 

In
 

Ref.
 

[ 2],
 

the
 

Poisson
 

structure
 

of
 

a
 

class
 

of
 

Lotka-Volterra
 

systems
 

was
 

analyzed,
 

which
 

can
 

be
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　 　 　 　 　written
 

in
 

the
 

form
 

of
 

(1)
 

with
 

H(y) = ∑
n

i = 1
βiyi - pi ln yi,

B(y) = (bijyiy j) n×n =
diag(y1,…,yn)Bdiag(y1,…,yn),

(3)

where
 

y( t) = (y1( t),…,yn( t)) T,B = (bij) n×n
 is

 

a
 

skew-symmetric
 

constant
 

matrix,
 

and
 

β i ≠ 0 ( i = 1,
…,n) .

 

It
 

is
 

not
 

difficult
 

to
 

check
 

that
 

( 1)
 

with
 

(3)
 

can
 

be
 

of
 

the
 

form
 

(2).
As

 

is
 

well
 

known,
 

however,
 

stochastic
 

perturbations
 

are
 

unavoidable
 

and
 

universal
 

in
 

real
 

world.
 

Accordingly,
 

there
 

have
 

been
 

literature
 

exploring
 

the
 

Lotka-Volterra
 

system
 

( 2 )
 

under
 

Gaussian
 

white
 

noise
 

perturbations,
 

which
 

were
 

written
 

in
 

stochastic
 

differential
 

equations
 

(SDEs)
 

of
 

It ô
 

form[3-6] .
 

For
 

instance,
 

Mao
 

et
 

al. [4]
 

showed
 

that
 

the
 

environmental
 

noise
 

suppresses
 

the
 

explosion
 

in
 

the
 

Lotka-Volterra
 

system,
 

i. e. ,
 

with
 

probability
 

1
 

the
 

solution
 

of
 

the
 

stochastic
 

L-V
 

system
 

exists
 

(no
 

explosion
 

in
 

finite
 

time)
 

uniquely
 

under
 

certain
 

non-
global

 

Lipschitz
 

conditions;
 

Rudnicki
 

and
 

Pichór[6]
 

analyzed
 

the
 

influence
 

of
 

various
 

stochastic
 

perturbations
 

on
 

prey-predator
 

systems.
 

To
 

the
 

best
 

of
 

our
 

knowledge,
 

however,
 

there
 

is
 

few
 

research
 

on
 

Lotka-Volterra
 

systems
 

under
 

stochastic
 

perturbations
 

of
 

Stratonovich
 

sense,
 

except
 

for
 

the
 

work
 

by
 

Khasminskii
 

and
 

Klebaner[7] ,
 

which
 

investigated
 

the
 

long
 

term
 

behavior
 

of
 

the
 

solution
 

of
 

the
 

Lotka-
Volterra

 

systems
 

under
 

small
 

random
 

perturbations
 

of
 

Stratonovich
 

sense
 

on
 

the
 

birth
 

and
 

death
 

rate.
 

Poisson
 

systems
 

under
 

certain
 

Stratonovich
 

white
 

noises
 

perturbations,
 

namely
 

the
 

stochastic
 

Poisson
 

systems,
 

got
 

attention
 

in
 

recent
 

years,
 

see
 

e. g.
 

Refs.
 

[ 8-11 ],
 

where
 

in
 

Ref.
 

[ 9 ],
 

the
 

general
 

form
 

of
 

stochastic
 

Poisson
 

systems
 

was
 

given
 

as
dy( t) = B(y( t)) ΔH0(y( t))dt +(

∑
m

r = 1

ΔHr(y( t)) 􀳱 dWr( t) ) , (4)

where
 

B(y),H0(y)
 

are
 

defined
 

the
 

same
 

way
 

as
 

for
 

B(y)
 

and
 

H(y) ,
 

respectively,
 

for
 

the
 

deterministic
 

Poisson
 

systems
 

(1),
 

and
 

Hr(y)
 

( r = 1,…,m)
 

are
 

smooth
 

functions.
 

(W1( t),…,Wm( t))
 

is
 

an
 

m-
dimensional

 

standard
 

Wiener
 

process
 

defined
 

on
 

a
 

complete
 

filtered
 

probability
 

space,
 

and
 

the
 

circle
 

‘ 􀳱 ’
 

in
 

front
 

of
 

dWr( t)
 

denotes
 

Stratonovich
 

stochastic
 

differential
 

equations.
 

In
 

this
 

paper
 

we
 

consider
 

the
 

Lotka-Volterra
 

systems
 

( 1 )
 

with
 

( 3 )
 

under
 

Stratonovich
 

white
 

noise
 

perturbation,
 

of
 

the
 

following
 

form:
 

dy( t) = B(y( t)) ΔH(y( t))(dt + c 􀳱 dW( t)),
(5)

where
 

c > 0
 

denotes
 

the
 

intensity
 

of
 

random
 

noise,
 

and
 

W( t)
 

is
 

a
 

one-dimensional
 

standard
 

Wiener
 

process.
 

Obviously
 

it
 

is
 

a
 

stochastic
 

Poisson
 

system
 

according
 

to
 

( 4 ).
 

The
 

stochastic
 

version
 

of
 

the
 

Lotka-Volterra
 

system
 

studied
 

as
 

an
 

example
 

in
 

Ref.
 

[8]
 

is
 

of
 

this
 

form.
 

However,
 

it
 

can
 

be
 

seen
 

that
 

the
 

coefficients
 

of
 

the
 

system
 

do
 

not
 

satisfy
 

the
 

global
 

Lipschitz
 

and
 

linear
 

growth
 

conditions
 

guaranteeing
 

existence
 

and
 

uniqueness
 

of
 

the
 

solution[12-13] .
 

When
 

transfered
 

into
 

its
 

equivalent
 

Itô
 

form,
 

the
 

drift
 

coefficient
 

is
 

cubic,
 

which
 

is
 

different
 

from
 

the
 

equations
 

with
 

non-global
 

Lipschitz
 

and
 

non-linearly
 

growing
 

coefficients
 

considered
 

in
 

the
 

Refs.
 

[3-7],
 

wherefore
 

the
 

results
 

regarding
 

well-posedness
 

of
 

the
 

solutions
 

in
 

these
 

literature
 

are
 

not
 

applicable
 

for
 

this
 

system
 

either.
 

It
 

then
 

arises
 

the
 

question,
 

whether
 

the
 

system
 

( 5)
 

with
 

( 3)
 

has
 

a
 

unique
 

solution,
 

which
 

does
 

not
 

explode
 

in
 

a
 

finite
 

time,
 

with
 

probability
 

1.
 

Moreover,
 

the
 

definiton
 

of
 

H(y)
 

in
 

(3)
 

intrinsically
 

needs
 

yi > 0
 

( i = 1,…,n ).
 

Then
 

it
 

is
 

also
 

to
 

prove
 

that
 

the
 

solution
 

of
 

(5)
 

with
 

(3)
 

is
 

positive
 

with
 

probability
 

1.
 

Up
 

to
 

now,
 

to
 

our
 

knowledge,
 

no
 

answers
 

are
 

available
 

for
 

these
 

questions.
 

1　 A
 

class
 

of
 

invariants
 

of
 

the
 

system
　 　 We

 

first
 

introduce
 

some
 

notations.
 

To
 

write
 

a
 

vector
 

α > 0
 

is
 

to
 

mean
 

that
 

all
 

its
 

components
 

are
 

greater
 

than
 

0.
 

ℝ n
+ : = {y ∈ ℝ n:y > 0} ,

 

and
 

we
 

denote
 

the
 

kernal
 

of
 

the
 

constant
 

matrix
 

B
 

by
 

KerB: = {x ∈ ℝ n:Bx = 0} . a ∧ b: = min{a,b} ,
 

and
 

we
 

let
 

(Ω,F, {Ft} t≥0,P)
 

be
 

a
 

complete
 

probability
 

space
 

with
 

the
 

filtration
 

{Ft} t≥0
 satisying

 

the
 

usual
 

conditions,
 

where
 

the
 

one-dimensional
 

Wiener
 

process
 

W( t)
 

is
 

defined.
 

It
 

is
 

not
 

difficult
 

to
 

verify
 

that
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C(y) = α1 ln y1 + … + αn ln yn

for
 

y∈ ℝ n
+

 is
 

a
 

Carsimir
 

function
 

of
 

system
 

(5)
 

with
 

( 3 ),
 

i. e. ,
 ΔC(y) TB(y) = 0 (∀y ∈ ℝ n

+ ) ,
 

whenever
 

α = (α1,…,α n) T ∈ KerB .
 

Note
 

that,
 

we
 

do
 

not
 

exclude
 

the
 

case
 

α = 0.
 

Proposition
 

1. 1 　 Let
 

T > 0,f(x1,x2)
 

be
 

a
 

binary
 

function
 

defined
 

on
 

ℝ ×ℝ ,
 

and
 

f ∈ C1(ℝ ×
ℝ ) .

 

Suppose
 

the
 

solution
 

y( t)
 

of
 

system
 

(5)
 

with
 

( 3 )
 

is
 

positive
 

on
 

[0,T] .
 

Then
 

f(H(y( t)),
C(y( t)))

 

is
 

an
 

invariant
 

of
 

the
 

system
 

( 5)
 

with
 

(3)
 

on
 

[0,T] ,
 

where
 

C(y)
 

is
 

the
 

Casimir
 

function
 

mentioned
 

above.
Proof　 By

 

the
 

Stratonovich
 

chain
 

rule,
 

it
 

holds
 

on
 

[0,T] :
 

dH(y( t)) = ΔH(y( t)) T 􀳱 dy( t)
= ΔH(y( t)) TB(y( t)) ΔH(y( t))
　 (dt + c 􀳱 dW( t)) = 0,

where
 

the
 

last
 

equality
 

is
 

due
 

to
 

skew-symmetry
 

of
 

B(y) ,
 

and
dC(y( t))
= ΔC(y( t)) T 􀳱 dy( t)
= ΔC(y(t))TB(y(t)) ΔH(y(t))(dt + c 􀳱 dW(t))
= 0.
Thus
df(H(y( t)),C(y( t))) =
􀆟1 f(H(y),C(y)) 􀳱 dH(y( t)) + 􀆟2 f(H(y),
C(y)) 􀳱 dC(y( t)) = 0. □

2　 Non-explosion
 

and
 

positiveness
 

of
 

the
 

solution
　 　 In

 

the
 

following,
 

we
 

will
 

prove
 

that
 

the
 

solution
 

of
 

the
 

system
 

(5)
 

with
 

(3)
 

is
 

globally
 

non-explosive
 

and
 

positive
 

almost
 

surely.
 

To
 

this
 

end,
 

we
 

make
 

the
 

following
 

assumptions.
Hypothesis

 

2. 1 　 Assume
 

that
 

for
 

the
 

parameters
 

β = (β 1,…,β n) T,p = (p1,…,pn) T
 

of
 

the
 

system
 

(5)
 

with
 

(3),
 

there
 

exist
 

a
 

real
 

number
 

s ∈ ℝ
 

and
 

a
 

vector
 

α ∈ KerB
 

such
 

that
sβ > 0,
- sp + α < 0.{

　 　 Theorem
 

2. 1　 Under
 

Hypothesis
 

2. 1,
 

for
 

any
 

given
 

initial
 

value
 

y(0) ∈ ℝ n
+ ,

 

there
 

is
 

a
 

unique
 

solution
 

y( t)
 

to
 

the
 

system
 

(5)
 

with
 

(3)
 

on
 

t ≥ 0,
 

and
 

the
 

solution
 

y( t)
 

will
 

remain
 

in
 

ℝ n
+ ,

 

with
 

probability
 

1.
Proof　 The

 

equivalent
 

Itô
 

form
 

of
 

the
 

system
 

(5)
 

with
 

(3)
 

is
 

dy( t) = B(y) ΔH(y)(dt + cdW( t)) +
c2

2
􀆟
􀆟y

(B(y) ΔH(y))B(y) ΔH(y)dt. (6)

Taking
 

the
 

concrete
 

expressions
 

of
 

B(y)
 

and
 

H(y)
 

in
 

(3)
 

into
 

account,
 

it
 

is
 

not
 

difficult
 

to
 

see
 

that
 

its
 

coefficients
 

are
 

locally
 

Lipschitz
 

continuous,
 

and
 

then
 

it
 

has
 

a
 

unique
 

local
 

solution
 

y( t)
 

on
 

[0,τ e) ,
 

where
 

τ e
 is

 

the
 

explosion
 

time[12-13] .
 

Next,
 

we
 

show
 

this
 

solution
 

is
 

global,
 

i. e. ,
 

τ e = + ∞
 

almost
 

surely.
 

Choose
 

an
 

integer
 

k0 > 0
 

such
 

that
 

every
 

component
 

of
 

y(0)
 

belongs
 

to
 

[1 / k0,k0] .
 

For
 

each
 

integer
 

k ≥ k0,
 

define
 

the
 

stopping
 

time
 

τk: = inf { t ∈ [0,τe):yi( t) ∉ (1 / k,k)
for

 

some
 

i = 1,…,n}
on

 

the
 

probability
 

space
 

(Ω,F,P) .
 

We
 

set
 

inf
Ø = + ∞ ,

 

which
 

corresponds
 

to
 

the
 

case
 

when
 

for
 

certain
 

k∗,yi( t) ∈ (1 / k∗,k∗) ,
 

for
 

all
 

i ∈ {1,
…,n}

 

and
 

t∈ [0,τ e) .
 

This
 

can
 

only
 

happen
 

when
 

τ e = + ∞ ,
 

due
 

to
 

continuity
 

and
 

construction
 

of
 

y( t)
 

on
 

[0,τ e) [13] .
 

Clearly,
 

{τ k, k = 0,1,2,…}
 

is
 

an
 

increasing
 

random
 

sequence.
 

Set
 

τ∞ =lim
k→∞

τ k ,
 

then
 

τ∞ ≤ τ e
 a.

s. .
 

Hence,
 

to
 

show
 

τ e = + ∞
 

a. s.
 

and
 

y( t) ∈ ℝ n
+

 

a. s.
 

for
 

all
 

t ≥ 0,
 

we
 

only
 

need
 

to
 

prove
 

τ∞ = + ∞
 

a. s. .
If

 

this
 

statement
 

is
 

not
 

true,
 

then
 

there
 

exist
 

real
 

numbers
 

T > 0
 

and
 

ε ∈ (0,1)
 

such
 

that
 

P({τ∞ ≤ T}) > ε,
which

 

implies
 

P({τk ≤ T}) > ε
 

for
 

all
 

k ≥ k0,
since

 

{τ k, k = 0,1,2,…}
 

is
 

an
 

increasing
 

random
 

sequence.
 

By
 

Hypothesis
 

2. 1,
 

let
 

(a1,a2,…,an): = sβ > 0,
(d1,d2,…,dn): = - sp + α < 0.

Now,
 

for
 

y > 0
 

we
 

construct
 

the
 

function

G(y): = ∑
n

j = 1
a jy j + d j ln y j + d j - d j ln -

d j

a j
( ) ,

G j(y j): = a jy j + d j ln y j + d j - d j ln -
d j

a j
( ) ,

j = 1,…,n.
(7)
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We
 

see
 

that
 

G j(y j)
 

( j = 1,…,n )
 

are
 

convex
 

functions
 

and
 

have
 

minimum
 

value
 

0
 

on
 

(0, + ∞ ) ,
 

and
 

G j(y j) → + ∞
 

as
 

y j → 0
 

or + ∞ .
 

Therefore
 

G(y(τk)) = ∑
n

j = 1
G j(y j(τk)) ≥

G i(yi(τk)) ≥ G i(1 / k) ∧ G i(k),
where

 

yi
 denotes

 

the
 

element
 

of
 

y
 

that
 

runs
 

beyond
 

(1 / k,k)
 

at
 

the
 

time
 

τ k .
 

Since
 

y( t)
 

is
 

positive
 

on
 

[0,τ k ∧ T] ,
 

according
 

to
 

Proposition
 

1. 1,
 

G(y( t)) ≡ sH(y( t)) + C(y( t)) +

∑
n

j = 1
d j - d j ln -

d j

a j
( )( )

is
 

an
 

invarint
 

of
 

the
 

system
 

on
 

the
 

time
 

interval
 

[0,
τ k ∧ T] .

 

Then
 

set
 

Ωk: = {τ k ≤ T} ,
 

we
 

have
　 　 G(y(0)) = E[G(y(τ k ∧ T))]

≥ E[1Ωk
G(y(τ k ∧ T))]

= E[1Ωk
G(y(τ k))]

> ε[G i(1 / k) ∧ G i(k)].
Let

 

k→ ∞
 

in
 

the
 

above
 

inequality,
 

we
 

then
 

draw
 

the
 

contradiction
 

G(y(0)) > + ∞ .
Thus

 

it
 

holds
 

τ∞ = + ∞
 

almost
 

surely.
 

□
Remark

 

2. 1 　 When
 

the
 

constant
 

matrix
 

B
 

is
 

non-singular,
 

i. e. ,
 

KerB
 

contains
 

only
 

0,
 

the
 

vector
 

α
 

must
 

be
 

equal
 

to
 

0,
 

in
 

this
 

case,
 

the
 

conditions
 

in
 

Hypothesis
 

2. 1
 

can
 

be
 

simply
 

expressed
 

as
 

β > 0,
p > 0

 

or
 

β < 0,
 

p < 0.
 

Of
 

course,
 

this
 

case
 

only
 

occurs
 

when
 

the
 

system
 

is
 

of
 

even
 

dimension,
 

since
 

an
 

odd-dimensional
 

skew-symmetric
 

matrix
 

B
 

must
 

be
 

singular.
Remark

 

2. 2 　 Under
 

Hypothesis
 

2. 1,
 

the
 

solution
 

y( t)
 

is
 

positive
 

on
 

[0, + ∞ )
 

almost
 

surely,
 

then
 

f(H(y( t)),C(y( t)))
 

given
 

in
 

Proposition
 

1. 1
 

is
 

a
 

class
 

of
 

invariants
 

of
 

the
 

system
 

( 5) with
 

(3)
 

on
 

[0, + ∞ ) .
 

3　 Boundedness
 

of
 

the
 

positive
 

solution
　 　 Based

 

on
 

Theorem
 

2. 1,
 

we
 

can
 

further
 

obtain
 

the
 

boundedness
 

of
 

the
 

positive
 

solution
 

y( t) .
Proposition

 

3. 1 　 Under
 

Hypothesis
 

2. 1,
 

for
 

any
 

given
 

initial
 

value
 

y(0) ∈ ℝ n
+ ,

 

the
 

solution
 

y( t)
 

of
 

the
 

system
 

(5)
 

with
 

( 3)
 

is
 

almost
 

surely
 

bounded.
Proof 　 According

 

to
 

Remark
 

2. 2,
 

almost
 

surely,
 

the
 

constructed
 

function

G(y( t)) = ∑
n

j = 1
a jy j( t) + d j ln (y j( t)) +

d j - d j ln -
d j

a j
( )

in
 

(7)
 

is
 

an
 

invariant
 

of
 

the
 

system
 

(5)
 

with
 

(3)
 

on
 

[0, + ∞ ) ,
 

i. e. ,
 

G(y(t)) ≡ G(y(0)) .
 

Moreover,
 

the
 

function
 

Gj(yj)
 

has
 

the
 

minimum
 

value
 

Gj -
dj

aj
( )

 

which
 

is
 

equal
 

to
 

0
 

on
 

(0, + ∞ ) .
 

Therefore
 

G i(yi( t)) = G(y(0)) -

∑
n

j≠i
G j(y j( t)) ≤ G(y(0)),

 

i. e. ,

aiyi( t) + di ln (yi( t)) + di -

di ln ( -
d j

a j
) ≤ G(y(0)) .

Hence,
 

yi( t)
 

locates
 

in
 

the
 

bounded
 

compact
 

set
 

{ yi ∈ ℝ + :aiyi + di ln yi ≤ G(y(0)) - di +
di ln ( - di / ai)}

 

for
 

all
 

i = 1,…,n ,
 

almost
 

surely.
 

Further,
 

the
 

equation
 

of
 

the
 

tangent
 

line
 

of
 

G i
 at

 

the
 

point
 

-
2di

ai
,G i -

2di

ai
( )( )

 

is
 

z =
ai

2 yi +
2di

ai
( ) + G i -

2di

ai
( ) .

Then
 

by
 

the
 

convexity
 

of
 

G i(yi)
 

we
 

obtain
 

ai

2 yi( t) +
2di

ai
( ) + G i -

2di

ai
( ) ≤

G i(yi( t)) ≤ G(y(0)),
which

 

implies
 

0 < yi( t) ≤
2[G(y(0)) - di ln2]

ai

for
 

all
 

t ≥ 0
 

and
 

i = 1,…,n. □

4　 Numerical
 

validations
　 　 In

 

this
 

section,
 

we
 

simulate
 

the
 

solutions
 

of
 

two
 

concrete
 

models
 

of
 

the
 

form
 

(5)
 

with
 

(3),
 

by
 

the
 

numerical
 

method
 

proposed
 

in
 

Ref.
 

[ 8 ]
 

for
 

stochastic
 

Poisson
 

systems
 

of
 

the
 

form
 

(5),
 

which
 

was
 

proved
 

to
 

be
 

of
 

root
 

mean-square
 

convergence
 

order
 

1,
 

and
 

reads

yn+1 = yn + B
yn + yn+1

2( )

∫
1

0

ΔH(yn + τ(yn+1 - yn))dτ(h + cΔŴn), (8)
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Fig. 1　 Sample
 

paths
 

of
 

the
 

system
 

(9)

where
 

h
 

is
 

the
 

time
 

step,
 

Δ Ŵn: = h ζh  is
 

the
 

truncated
 

Wiener
 

process
 

increment
 

on
 

the
 

time
 

interval
 

[ tn,tn+1] ,
 

and

ζh =
ξ, if　 ξ ≤ Ah ,
Ah, if　 ξ > Ah,
- Ah, if　 ξ < - Ah,

ì

î

í

ï
ï

ïï

where
 

Ah = 4 | ln (h) | ,
 

and
 

ξ
 

is
 

a
 

random
 

variable
 

subject
 

to
 

standard
 

normal
 

distribution.
 

In
 

this
 

way
 

we
 

observe
 

the
 

behavior
 

of
 

the
 

solutions,
 

and
 

validate
 

the
 

theoretical
 

results
 

on
 

the
 

solutions.
 

4. 1　 A
 

three-dimensional
 

model
　 　 Consider

 

the
 

three-dimensional
 

Lotka-Volterra
 

system
 

with
 

Stratonovich
 

white
 

noise
 

perturbation[8]
 

dy( t) = B(y( t)) ΔH(y( t))(dt + c 􀳱 dW( t)),

B(y) =
0 vy1y2 bvy1y3

- vy1y2 0 - y2y3

- bvy1y3 y2y3 0
( ) ,

H(y) = aby1 + y2 + γln y2 - ay3 - μln y3 . (9)
By

 

simple
 

calculation
 

one
 

can
 

varify
 

that
 

B(y) =
diag(y1,y2,y3)B

  

diag(y1,y2,y3)
 

with
 

B =
0 v bv
- v 0 - 1
- bv 1 0

( ) ,
 

and
 

KerB = { s2α:s2 ∈ ℝ } ,
 

where
 

α = ( - 1 / v, - b,1) T
 

is
 

a
 

basis.
 

Then
 

a
 

Casimir
 

function
 

of
 

this
 

system
 

C(y) = - 1 / vln y1 -
bln y2 + ln y3,

 

for
 

y ∈ ℝ 3
+ .

 

In
 

this
 

system,
 

β =
(ab,1, - a) T,p = (0, - γ,μ) T ,

 

we
 

use
 

the
 

numerical
 

scheme
 

(8)
 

to
 

simulate
 

this
 

system,
 

with
 

two
 

different
 

groups
 

of
 

parameters.

First
 

set
 

a = - 2,b = - 1,v = - 0. 5,γ = 1,μ =
2 ,

 

and
 

choose
 

s1 = 1,s2 = - 3,
 

such
 

that
 

s1(ab,1,
- a) = (2,1,2) > 0

 

and
 

- s1(0, - γ,μ) +
s2( - 1 / v, - b,1) = ( - 6, - 2, - 5) < 0.

 

Then
 

the
 

Hypothesis
 

2. 1
 

is
 

satisfied
 

and
 

the
 

function
 

G(y)
= 2y1 - 6ln y1 + y2 - 2ln y2 + 2y3 - 5ln y3 - 13 +

ln2278125
8

.
 

In
 

Fig. 1(a),
 

we
 

show
 

one
 

sample
 

path
 

of
 

y1,y2,
 

and
 

y3,
 

respectively,
 

it
 

can
 

be
 

seen
 

that
 

the
 

solution
 

is
 

non-explosive,
 

positive
 

and
 

bounded.
　 　 Then

 

we
 

set
 

another
 

group
 

of
 

parameters
 

a =
-0. 2,b= -1,v= 0. 5,γ= -1,μ= 2,

 

and
 

choose
 

s1 = 1,
s2 = 0. 5,

 

such
 

that
 

s1(ab,1,-a) = (0. 2,1,0. 2) >0
 

and
 

-s1(0,-γ,μ)+s2(-1 / v,-b,1)= (-1,-0. 5,-1. 5)
<0.

 

Hence
 

these
 

parameters
 

also
 

meet
  

the
 

Hypothesis
 

2. 1,
 

and
 

the
 

function
 

G(y) = 0. 2y1 - ln y1 + y2 -

0. 5lny2 + 0. 2y3 - 1. 5ln y3 - 13 + ln 5 3375
4

.
 

The
 

sample
 

paths
 

of
 

y1,y2
 and

 

y3
 under

 

this
 

set
 

of
 

parameters
 

are
 

shown
 

in
 

Fig. 1( b),
 

which
 

are
 

also
 

non-explosive,
 

positive
 

and
 

bounded.
 

In
 

Fig. 1,
 

we
 

take
 

the
 

parameter
 

c = 0. 5,
 

and
 

the
 

step
 

size
 

h = 10 -3,
 

initial
 

value
 

y(0) = (1. 0,
1. 9,0. 5) T

 

for
 

Fig. 1 ( a)
 

and
 

y(0) = (1. 0,1. 5,
0. 5) T

 

for
 

Fig. 1(b),
 

respectively.
4. 2　 A

 

two-dimensional
 

model
　 　 We

 

consider
 

a
 

prey-predator
 

model[1]
 

with
 

random
 

pertubation
du
dv( ) =

u(v - 2)
v(1 - u)( ) (dt + c 􀳱 dW( t)) =

527



中国科学院大学学报 第 39 卷

0 uv
- uv 0( ) ΔH(u,v)(dt + c 􀳱 dW( t)),

(10)
where

 

H(u,v) = u - ln u + v - 2ln v.
 

In
 

this
 

case,
 

B(u,v) = diag(u,v)Bdiag(u,v)
 

with
 

B =
0 1

- 1 0( ) ,KerB
 

contains
 

only
 

0,
 

and
 

β = (1,1) T

> 0,p = (1,2) T > 0.
 

Then
 

the
 

parameters
 

satisfy
 

Hypothesis
 

2. 1,
 

and
 

the
 

function
 

G(u,v) = u - lnu
+ v - 2ln v - 3 + 2ln 2.

 

We
 

use
 

the
 

numerical
 

scheme
 

(8)
 

with
 

y =:(u,v) T
 

to
 

simulate
 

the
 

solution
 

of
 

the
 

system
 

( 10).
 

As
 

shown
 

in
 

Fig. 2 ( a)
 

and
 

Fig. 2 ( b),
 

the
 

solution
 

is
 

non-explosive,
 

positive
 

and
 

bounded.

Fig. 2　 Sample
 

paths
 

of
 

the
 

system
 

(10)

　 　 Here
 

we
 

take
 

c = 0. 5,
 

and
 

the
 

initial
 

value
 

(u(0),v(0)) = (1. 5,2. 5) ,
 

the
 

step
 

size
 

h =
10-3 .

 

5　 Conclusion
　 　 We

 

prove
 

the
 

almost
 

sure
 

existence
 

( global
 

non-explosion),
 

uniqueness
 

and
 

positiveness
 

of
 

the
 

solution
 

of
 

a
 

class
 

of
 

stochastic
 

Poisson
 

systems,
 

under
 

certain
 

hypothesis,
 

via
 

constructing
 

a
 

function
 

G(y)
 

which
 

is
 

a
 

special
 

class
 

of
 

invariants
 

of
 

the
 

systems.
 

Almost
 

sure
 

boundedness
 

of
 

the
 

solution
 

is
 

also
 

verified.
 

Numerical
 

simulations
 

give
 

support
 

to
 

the
 

theoretical
 

results.
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