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Abstract This work is concerned with tests for one-sample mean vectors under high dimensional
cases. Existing high dimensional tests for mean vectors base on the assumption of elliptical
distribution have been proposed recently. To extend to more distributions, we propose a signed-rank-
based test. The proposed test statistic is robust and scalar-invariant. Asymptotic properties of the test
statistic are established. Numerical studies show that the proposed test has a good control of the type-
I error and is more efficiency. We also employ the proposed method to analyze an ophthalmic data.
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Suppose that X, ,+--,X, € R’ are independent consider the following test
and identically distribution random samples with Hyp =p, vs. H .p #p,. (1)

mean vector g and covariance matrix 3. And undern < p. This is the so-called “large p, small
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n” paradigm. When p is fixed and under the

assumption of normal distribution, a traditional
method to test (1) is Hotelling’ s test statistic.
However, Hotelling’ s test is not defined in the case
of p>n because of the singularity of the sample
covariance matrix. It is a challenge to the traditional
method in high dimensional situation.

The challenge

dimensional

of testing (1) in high

situation  has  attracted  many
researchers. Ref. [ 1] constructed the test statistics
which avoid the inverse of the sample covariance
matrix. but the test statistics can only be applied to
the case of p/n—c € (0,1) , which means that the
increasing rate of the sample dimension should be
same as the sample size. Ref. [2] proposed a new
test statistic without any direct relationship between p
and n . In practice, different components may have
different scales. Therefore, scalar-invariant is an
important property to a test statistic. Ref. [3], Ref.
[4] and Ref. [ 5] constructed a test statistic with
the property of scalar-invariant and under the
assumption that p = o(n’) . Ref. [6] proposed a
scalar-invariant test that allows the dimension to be
arbitrarily large. But their test is not location shift
invariant. However, under heavy-tailed
distributions, which frequently arise in genomics and
quantitative finance, the asymptotic properties of the
above test statistics are not established, a natural
result is that these tests tend to have unsatisfactory

Under the

distributions, Ref. [ 7] proposed a novel non-

power. assumption  of elliptical
parametric test based on spatial-signs, which is more
powerful than the test in Ref. [2] for heavy-tailed
multivariate distributions and has similar power to the
test in Ref. [ 2] for multivariate normal distribution.

Ref. [ 8]

proposed a novel scalar-invariant test based on

But their test is not scalar-invariant.

multivariate-sign, which is more powerful than the
test in Ref. [ 5] for heavy-tailed multivariate
distributions. And their method is wunder the
assumption that log(p)=o0(n).

We propose a novel test for hypothesis (1)
based on signed-rank method and our study have two
main contributions.

Firstly, the proposed test

statistic works for more distributions because signed-
rank method only requires that the distribution of the
samples is symmetric. And the test statistic is
available when p is arbitrarily large. Secondly, we
show that, under null hypothesis, the proposed test
statistic is asymptotically normal. Moreover, the
simulation study shows that our method is scalar-
invariant and robust, and is more efficient without

the assumption of elliptical distributions.

1 A signed-rank-based high dimen-
sional test

1.1 The proposed test statistic
Suppose that X;,i = 1,---,n are independent
and identically distribution random samples with
dimension p . We denote that X = (X,,,-,X,,),
k=1,---,p as the sample of the k-th dimension.
And, let (r,,---,r,,) be the rank of (I X, |,
| X, 1) . To test hypothesis (1), we proposed a
test statistic based on signed-rank functions, which
are defined as:
U, = diaglsign(X,) - sign(X,) | (ryoeer)"
where ¢ = 1,2,---,n. Then, we consider the
following U-statistic
" Ul
7=
" 2n(n-1)

Sets; = (s, ," ,sl.p)'[' with covariance matrix ¥, > 0,

i

(2)

where s; = sign(X;) . To establish the asymptotic

properties of the U statistic under the null

hypothesis, we need following conditions
1
AL P(s; =1)=P(s;=-1) =?f0r each i and

jsl X1 #1 Xy | for any i # k and each j, and
X; # 0for eachiand;j ; s; and r; are uncorrelated for
eachiandj .

A2.tr(3Y) =o(t’(32)) .

Remark 1.1

condition of the

Condition Al is necessary
signed-rank test under null
hypothesis and it indicates that the random samples
have symmetric distributions. Under the first term in
condition A1, we have E(s;)=0. Under the second
term in condition A1, r; # rj for any i # k and each

j so that (ry,---,r) is a permutation of all the
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elements in {1,---,n} . Condition A2 is similar to
that applied in Ref. [2], and it is a quite mild
condition on the eigenvalues of 3.
Under H,, and then suppose condition Al
hold, it is easy to show that
E(T,)=0,
and
Var(T)) = 71
" 2n(n-1)
where 3, = E(U,U)) .
Theorem 1.1 in the following establishes the

(7)),

asymptotic normality of T, .
Theorem 1.1
conditions Al and A2 hold, asn— o andp— o ,

T

2n(n - 1)tr(3?)

Theorem 1.1 implies that we can reject H, if

T, > z,(2n(n — 1)w(32))"?, where z, is the
upper a-quantile of N(0,1). The proof of Theorem

Under H,, and then suppose

5 N(0,1). (3)

1.1 is conventional, so we omit the details. If
someone needs detailed proof, please contact us.
1.2 Computational issue

In practice, in oder to estimate Var(T,) , the

estimator for tr(3?) is needed. Similar to the
estimator used by Ref. [ 2], we propose the

following estimator

2 1 ; U
w(3)=——trf Y (U; =Ugp)

n(n—-1) =k
U,T( Uk _E(j,k) ) UATA %
where (7(/4,“ is the sample mean of U after excluding

U and U, , and ﬁ(j) is the sample mean of U after

excluding U;. Then, we have the estimator of
Var(T,): Var(T,) = wr(32)/2n(n = 1) . And,

under H,, we could show Var(T,)/Var(T,) 5.

When n and p are large, the computation of

2
tr(3>) is too complex. In order to improve the

speed of calculation, inspired by Ref. [ 7], we

>
could transform tr(37) to:

—_— n n
() = - U'u)? +
r( u) (n_1>(n_2>2§;( j ./)
1 L
U'vH)? +
n(n—l)(n—Z)z(; U
n_l n
— UuU™?* +
n(n_z)zr%(; U )"
1-2n _ - _
—y uuhH o +
n(n-1) (; U
4n - 2 S T
U'vutor -
n(n—l)(n—Z); A
2 T
U'urutu, +
n(n—l)‘; o
(n=-2)" _.
U |
n(n-1)
_ 1 -
where U" = —— ) U, .
n— 20

2 Simulation study

We compare the performance of the proposed
test (SR) with five alternatives: Ref. [1] (BS),
Ref. [2] (CQ), Ref. [5] (SKK), Ref. [7]
(WPL), Ref. [8] (FZW ). All the following
simulations are replicated 1 000 times. And, we set
n =20, 50 and p =200, 1 000.

Example 1 We generate X, from p-variate
normal distribution N(u ,¥) . Two different choices
of = are considered as follows: 1) ¥, =R; 2) 3, =
D"?RD"?. Where R = (o) witho, =0. 5" for 1
<j,k<p, and D =diag{d, ,oo,d, b withd, = 1111
<j<p/Al +20{p/Ah+ 1 <j<p/2} +31{p/2 +
1 <;j<3p/4} +4l{3p/d+1<j<plforl <j<
p - Without loss of generality, we set u; = n for

j=1,p,andn =: ||u|* Vur(3*) =c. To
calculate the power, we set ¢ = 0.1 and 0. 15 when
n =20, andc¢=0.075and 0. 1 when n =50. And we
could calculate the size when we select ¢ = 0.

Table 1 stands for the performance of the six
tests in Example 1. We can see that the power of SR
is similar to those of BS, CQ and WPL when 3 =
3, and is more than those of BS, CQ and WPL
when 3 = 3.

performance when the scales of different components

It indicates that SR has better

are different. For example, when (n,p) = (20,
200),¥ =3, and ¢ = 0.1, the power of SR, BS,
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Table 1 The empirical size and power at the significance level of 5% in Example 1
(n,p) b} c BS CQ SKK WPL FZW SR
3 0(size) 0. 055 0. 066 0. 044 0. 065 0. 055 0. 061
0. 100 0.395 0.395 0.337 0. 427 0.375 0.379
0. 150 0.612 0. 607 0.551 0.571 0.579 0.536
(20,200) A
p 0( size) 0. 066 0. 059 0. 041 0. 058 0. 053 0. 062
0. 100 0. 407 0. 420 0.492 0.394 0. 550 0. 547
0.150 0.616 0. 603 0.759 0. 601 0. 807 0.779
¥, 0( size) 0. 067 0. 065 0. 025 0. 066 0.014 0. 062
0. 100 0. 405 0.398 0.237 0.401 0. 164 0. 400
0. 150 0. 621 0. 626 0.413 0. 621 0.347 0. 589
(20,1 000) .
3, 0( size) 0.052 0. 050 0.016 0.051 0.010 0. 050
0. 100 0. 396 0. 402 0.390 0. 400 0.304 0.571
0. 150 0. 626 0. 630 0.678 0. 626 0. 590 0.814
3 0( size) 0.051 0. 057 0. 046 0. 044 0. 058 0. 058
0.075 0.735 0.737 0. 689 0.724 0.789 0. 745
0. 100 0. 880 0. 878 0. 837 0. 870 0. 900 0. 871
(50,200) .
3, 0(size) 0. 050 0. 065 0. 042 0. 064 0. 059 0. 052
0. 075 0. 744 0.751 0.871 0. 745 0.909 0. 889
0. 100 0. 891 0. 893 0.967 0. 885 0. 986 0.968
> 0( size) 0. 046 0. 063 0.030 0. 063 0.051 0.051
0.075 0. 796 0.785 0. 692 0. 789 0.752 0.738
0. 100 0.927 0.927 0. 879 0.929 0.902 0.909
(50,1 000) .
p 0( size) 0. 054 0.051 0.031 0. 059 0. 049 0. 058
0.075 0. 786 0. 785 0.913 0.784 0.929 0. 946
0. 100 0. 931 0.910 0.976 0.917 0.992 0.991

CQ, and WPL are 0.547, 0.407, 0.420, and
0.394, respectively. And we observe that SR has
better performance in power than SKK and FZW
when p > n . The reason is that SKK and FZW are
under the assumptions that p cannot be much larger
than n . For example, when (n,p) = (20,1 000),
3 =23 and ¢ = 0.15, the power of SR, SKK and
FZW are 0. 589, 0.413 and 0. 347 respectively.
Example 2 In this example, X, is generated

of

freedom. The setting of mean vector 4 and covariance

from p-variate ¢-distribution with 3 degrees
3 are the same as those in Example 1. And we select
¢ = 0.1and 0. 15 for i to calculate the power.

Table 2 shows the simulation results in Example
2. We can see that SR have better performance in
power than that of other five tests in all settings. For
example, when (n,p) = (50,200),% =3, and ¢ =
0. 15, the power of SR is 0.773 and the power of
the other tests in this setting are 0.419, 0.538,
0.549, 0.577, and 0.610 For

t-distribution is a common heavy-tailed distribution,

respectively.

the results in this table indicate that SR is robust.

Table 3 shows the performance of the six tests in

Example 3. It shows that SR are more powerful than
other five tests in all settings. For example, when
(n,p) = (20,1 000),% =3,, and ¢=0.15, the
power of BS, CQ, SKK, WPL, FZW, and SR are
0.626, 0.615, 0.695, 0.653, 0.650, and 0. 949,
respectively. Laplace distribution is not a elliptical
distribution, and Table 3 shows that SR is more
effective in this situation.

Example 3 In this example, X,

i

is generated
from p-variate Laplace distribution. And we consider
the same setting of mean vector g and covariance
as those in Example 1. To calculate the power, we
select c = 0.1 and ¢ = 0. 15 when n = 20, and ¢
0. 05 and ¢ = 0. 075 when n = 50.

Table 3 shows the performance of the six tests

in Example 3. It shows that SR are more powerful
than other five tests in all settings. For example,
when (n,p) = (20,1 000),¥ =%,, andc = 0. 15,
the power of BS, CQ, SKK, WPL, FZW, and SR
are 0.626, 0.615, 0.695, 0.653, 0.650, and
0.949, respectively. Laplace distribution is not a
elliptical distribution, and Table 3 shows that SR is

more effective in this situation.
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Table 2 The empirical size and power at the significance level of 5% in Example 2

(n,p) 3 ¢ BS 1) SKK WPL FZW SR
> 0( size) 0.029 0. 047 0.028 0. 065 0. 046 0.061
0.10 0. 082 0. 141 0.112 0. 164 0. 134 0. 200
0.15 0.109 0.231 0.197 0.213 0.227 0. 340
(20,200) .
3, 0( size) 0. 034 0. 055 0.032 0. 065 0. 046 0.058
0.10 0.070 0. 146 0. 181 0. 163 0.214 0.331
0.15 0.132 0.217 0. 286 0.207 0.311 0. 453
% 0(size) 0.013 0. 055 0. 007 0. 058 0. 004 0. 049
0.10 0.032 0.131 0. 046 0. 140 0.024 0.207
0.15 0. 069 0. 160 0. 068 0. 199 0.042 0. 283
(20,1 000) _
3, 0( size) 0.018 0. 064 0.010 0.061 0. 006 0.061
0.10 0. 040 0.138 0. 064 0.137 0. 036 0.283
0.15 0.075 0. 190 0. 148 0. 175 0. 108 0.473
>, 0( size) 0.029 0. 059 0.030 0.051 0. 055 0. 064
0.10 0. 253 0.327 0.374 0.390 0.399 0.539
0.15 0.419 0.538 0. 549 0.577 0.610 0.773
(50,200) ,
3, 0( size) 0. 035 0. 063 0.043 0.061 0.043 0. 064
0.10 0.221 0.320 0.514 0.370 0.59%4 0. 740
0.15 0.416 0.512 0.783 0. 587 0. 808 0. 906
3 0( size) 0. 021 0. 049 0.022 0. 052 0. 046 0. 066
0.10 0. 163 0. 343 0.291 0.361 0.332 0.530
0.15 0.331 0.509 0.512 0.537 0. 555 0.789
(50,1 000) .
3, 0(size) 0.016 0. 056 0.022 0.043 0. 057 0. 045
0.10 0. 195 0.324 0.474 0. 380 0.522 0.768
0.15 0.328 0.571 0. 786 0. 555 0.789 0. 964
Table 3 The empirical size and power at the significance level of 5% in Example 3
(n,p) 3 ¢ BS cQ SKK WPL FZW SR
> 0( size) 0.051 0. 068 0. 034 0. 063 0. 045 0. 062
0. 100 0.384 0.383 0.334 0. 408 0.388 0.492
0. 150 0. 586 0. 591 0.563 0.617 0.597 0.719
(20,200) .
3, 0( size) 0. 059 0. 065 0.039 0. 066 0.042 0. 057
0. 100 0. 364 0.393 0.537 0. 403 0. 549 0.715
0. 150 0.597 0.588 0.799 0. 623 0.789 0.909
3 0( size) 0. 053 0. 053 0.012 0. 059 0.011 0. 060
0. 100 0. 380 0.391 0.201 0. 407 0. 166 0.519
0. 150 0.610 0. 603 0. 425 0. 637 0. 356 0.771
(20,1 000) .
3, 0(size) 0.053 0. 044 0. 008 0. 056 0. 007 0. 056
0. 100 0.378 0.391 0.428 0.390 0.317 0.723
0.150 0. 626 0.615 0. 695 0. 653 0. 650 0.949
3 0(size) 0. 059 0. 063 0. 042 0. 052 0. 063 0.058
0. 075 0. 508 0. 508 0. 495 0.515 0. 507 0.618
0. 100 0. 750 0.748 0. 699 0.737 0. 766 0. 843
(50,200) A
P 0( size) 0. 053 0. 057 0.030 0. 055 0. 055 0. 062
0. 075 0.522 0.519 0. 670 0. 507 0.701 0.811
0. 100 0.724 0.732 0. 892 0.734 0.901 0.977
¥, 0( size) 0. 052 0. 049 0.023 0. 053 0.038 0. 059
0.075 0. 485 0.523 0.413 0. 504 0.472 0.619
0. 100 0.774 0. 801 0. 690 0.775 0.743 0. 895
(50,1 000) .
3, 0( size) 0. 053 0. 060 0. 020 0. 050 0. 046 0.042
0.075 0.516 0.516 0. 663 0.513 0.725 0. 864
0. 100 0.798 0.783 0. 906 0.789 0. 960 0. 986
Example 4 In this example, we generate X, from normal distribution for 1 < j < 2p/5, generate

from a mixed distribution. Firstly, we generate Z; Z; from ¢ distribution with 3 degrees of freedom for
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2p/5 +1<j<7p/10, and generate Z; from Laplace
distribution for 7p/10 + 1 <j <p , and all Z, have
mean O and variance 1. Then we let X, =I'Z, +u ,
where I"is a p X p matrix with I'I"" =3 | and Z, =
[ Z, 7

%T
s Ly
of mean vector u and covariance ¥ as those in

And we consider the same setting

Example 1. To calculate the power, we select ¢
0.1land ¢ =0. 15 whenn =20, and ¢ =0. 05 and ¢ =
0. 075 when n = 50.

Table 4 stands for the simulation results in
Example 4. We can see that the power of SR is more

than those of the other five tests in all settings. For

example, when (n,p) = (50,1 000),% =23, and
¢ = 0.075, the power of SR is 0. 757 and the power
of the other tests in this setting are 0.214, 0. 271,
0. 548, 0.299 and 0. 613 respectively. In practice,
the variates usually have different distributions.
Hence, the results in Table 4 indicate that SR is
supposed to have better performancein application.
Moreover, we plot the empirical distributions of
SR with the settings of four examples and compare
them with the standard normal distribution. And,
Fig. 1 confirms the asymptotic normal distributions of

SR given in Theorem 1. 1.

Table 4 The empirical size and power at the significance level of 5% in Example 4

(n,p) > c BS co SKK WPL FZW SR
3, 0( size) 0.034 0. 064 0. 047 0. 060 0. 065 0. 062
0. 100 0. 166 0.213 0.270 0.235 0. 286 0. 369
0. 150 0. 259 0.334 0.427 0.362 0. 449 0.553
(20,200) .
3, 0( size) 0. 034 0. 062 0.028 0. 052 0.038 0. 046
0. 100 0. 167 0.221 0. 424 0. 239 0. 446 0. 561
0. 150 0. 296 0.374 0. 659 0. 385 0. 683 0.785
3 0( size) 0.025 0. 061 0.015 0. 056 0. 008 0. 053
0. 100 0.112 0. 190 0.136 0.207 0. 094 0.371
0. 150 0. 190 0.338 0. 307 0.331 0.223 0. 560
(20,1 000) A
3, 0( size) 0. 031 0. 060 0.013 0. 063 0. 002 0. 045
0. 100 0.132 0.218 0.283 0.215 0. 200 0.581
0. 150 0.226 0. 344 0.579 0. 368 0. 469 0. 841
3 0( size) 0. 037 0. 059 0. 040 0. 065 0. 064 0. 059
0.075 0.225 0.276 0.374 0. 302 0.417 0.477
0. 100 0.352 0.417 0.557 0.471 0. 624 0. 694
(50,200) ,
3, 0( size) 0. 050 0. 063 0. 039 0. 053 0. 067 0. 063
0.075 0.261 0.335 0.579 0. 302 0. 627 0.713
0. 100 0. 407 0. 454 0. 820 0. 508 0. 851 0. 893
3, 0( size) 0. 038 0.053 0.037 0. 055 0. 045 0. 057
0.075 0. 155 0.254 0. 308 0.271 0. 363 0. 454
0. 100 0.323 0.428 0.525 0. 409 0. 583 0.719
(50,1 000) _
3, 0( size) 0. 039 0. 056 0. 025 0. 060 0. 042 0. 046
0. 075 0.214 0.271 0.548 0.299 0.613 0.757
0. 100 0. 368 0. 456 0. 825 0.517 0. 856 0. 944

3 Real data application

In this section, we employ the proposed signed-
rank-based method to study an ophthalmic data.
This data is collected by the Beijing Tongren Eye
Center and Anyang Eye Hospital. We take the data
of the fifth and sixth grades of a class in the data,
Apply the proposed method to study whether the
visual factors and their interaction with eye habits
are different in different grades.

Firstly, we remove the visual factors and their

interaction with eye habits with missing values

greater than 15% , and impute the sample mean into
the missing values for the remaining 945 factors.
Then, we let X, be the difference between the visual
factors and their interaction with eye habits of the
i-th student in the sixth grade and those in the fifth
grade. And, we calculate standard deviations of
each dimension in X , and show the distribution of
the standard deviations in Fig. 2. It shows that these
standard deviations are different, so the scalar-
invariance method are supposed to have better
performance in the analysis of this data. Applying

the proposed SR method, we obtain a p-value <107,
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Fig.1 T, under the null hypothesis with four different distributions of X
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Fig.2 The distribution of the standard deviations

which illustrates that the visual factors and their
interaction factors of eye habits are different in
different grades. Through CQ, WPL and FZW
methods, the p-values obtained are 0.491 O,
0.491 3 and <107 respectively. For the standard
deviations of each dimension in the sample are
different, the CQ and WPL methods are relatively
ineffective, while the p-values obtained through

FZW and SR methods are small.
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