
第 38 卷第 4 期

2021 年 7 月

中国科学院大学学报

Journal

of

University

of

Chinese

Academy

of

Sciences
Vol.

38
July

　
No.

4
2021

∗ Supported

by

Beijing

Natural

Science

Foundation

(4184106),

National

Internet

of

Things

and

Smart

City

Key

Project

Docking

(Z181100003518002),

Beijing

Science

and

Technology

Project

(Z171100001117147)
†

Corresponding

author,

E-mail:

chenlan@ ime. ac. cn

文章编号:2095- 6134(2021)04- 0494- 09

Efficient

machine

learning

methods

for

hardware

Trojan

detection

using

instruction-level

power

character∗

LI

Ying1,

CHEN

Lan1,2†,

TONG

Xin1

(1

Institute

of

Microelectronics,

Chinese

Academy

of

Sciences,Beijing

100029,

China;

2

Beijing

Key

Laboratory

of

Three-dimensional

and

Nanometer

Integrated

Circuit

Design

Automation

Technology,Beijing

100029,

China)
(Received

26

September

2019; Revised

22

November

2019)

Li

Y,

Chen

L,

Tong

X.

Efficient

machine

learning

methods

for

hardware

Trojan

detection

using

instruction-level

power

character[J] .

Journal

of

University

of

Chinese

Academy

of

Sciences,

2021,38(4):494-502.

Abstract 　 Integrated

circuits

(IC)

are

vulnerable

to

hardware

Trojans

(HTs)

due

to

the

globalization

of

semiconductor

design

and

outsourcing

fabrication.

Stealthy

HTs

which

activate

malicious

aging

operations

are

ususlly

hide

in

normal

behaviors. Therefore,

it

is

a

challenge

to

detect

those

HTs

by

general

test

and

verification

approaches.

In

this

paper,

we

build

an

efficient

machine

learning

(ML)

framework

to

classify

the

genuine

and

Trojan-insert

chips

using

instruction-level

side-
channel

power

characters.

Different

instructions

and

HTs

are

used

as

feature

sets

to

construct

the

algorithm

models.

In

order

to

evaluate

the

performance

of

the

method,

we

implemented

five

HTs

benchmarks

of

MC8051

micro-controller

in

Altera

Stratix

II

FPGA,

and

presented

analysis

on

five

formulated

ML

models

in

both

supervised

and

unsupervised

modes.

The

test

results

showed

that

the

detection

accuracy

of

supervised

Naïve

Bayes

is

95%

in

average,

which

is

the

highest

among

the

ML

models.

The

supervised

SVM

consumed

the

shortest

running

time,

with

an

average

of

0. 04 s.

We

also

verified

that

one-class

SVM

can

be

a

valuable

method

without

golden

reference,

which

has

accuracy

in

the

range

from

17%

to

72%

even

in

Harsh

learning

condition.

Keywords　 hardware

Trojans;

machine

learning;

side-channel

power;

instruction-level;

detection
CLC

number:TN406　 Document

code:

A　 doi:10. 7523 / j. issn. 2095- 6134. 2021. 04. 008

指令级功耗特征的硬件木马检测高效机器学习

李莹1,陈岚1,2,佟鑫1

(1

中国科学院微电子研究所,

北京

100029;2

三维及纳米集成电路设计自动化技术北京市重点实验室,

北京

100029)

摘　 要　 由于半导体产业的设计和外包代工制造全球化趋势,使得集成电路容易受到硬件木

马造成的严峻威胁。 基于电路退化模型等的隐秘硬件木马通常将恶意行为隐藏在正常的芯片

第 4 期 LI

Ying,

et

al:

Efficient

machine

learning

methods

for

hardware

Trojan

detection

using

instruction-level……

行为中,从而难以被传统的测试和验证方法发现。 建立一个高效的机器学习框架,利用指令级

侧信道功耗特征对无木马和插入木马的芯片电路进行分类。 算法模型采用不同的指令和木马

构造提取的特征向量集。 为评估检测方法性能,在 Altera

Stratix

Ⅱ

FPGA 中实现基于 MC8051
微控制器的基准电路,并详细分析在有监督和无监督模式下的 5 种机器学习算法模型。 测试

结果表明,综合各种特征条件,有监督的朴素贝叶斯方法检测准确率最高,平均为 95% ,有监

督的支持向量机方法运行时间最短,平均为 0. 04 s。 另外验证了无监督的支持向量机可以作

为一种没有黄金参考模型下的有价值方法,即使在恶劣训练条件下,其检测准确率也在

17% ~ 72% 。
关键词　 硬件木马;机器学习;旁路功耗;指令级;检测

　 　 The

trend

of

globalization,

outsourcing

and

split

fabrication

give

the

attackers

more

opportunities

to

tamper

the

IC

design

with

hardware

Trojans

(HTs).

Such

malicious

circuits

can

be

implanted

either

during

the

design

or

manufacturing

phase,

which

enable

the

adversary

to

spy

confidential

contents,

control,

monitor

kernel

functions

or

deny

service

in

systems[1] .
Since

in

2005,

DARPA

issued

its

1st

program

for

hardware

systems

security,

many

HTs

detection

techniques

have

been

proposed.

Nondestructive

methods,

especially

side-channel

parameter

measurements

have

received

a

lot

of

attention[2-13] .

However,

in

a

system

chip,

the

activating

impact

of

HTs

under

certain

pattern

can

be

so

small

that

hide

in

normal

functions.

The

stealthy

ones

with

aging

triggers,

which

control

the

lifetime

of

a

circuit

by

counters

or

timers

and

violate

runtime

operations,

can

even

bypass

the

normal

verification

phase[8-9] .

All

of

the

above

reasons

significantly

overwhelmed

the

performance

of

side-channel

detection.

Thus,

efficient

detection

methods

from

system

operational

level

should

be

considered.

This

paper

introduces

a

solution

by

using

machine

learning

(ML)

algorithms

to

learn

side-
channel

power

characters

in

instruction-level

and

classify

the

genuine

and

Trojan-insert

circuits.

The

paper

mainly

contributes

as:
1)

A

creative

framework

includes

feature

set

generation

to

extract

learnable

instruction-level

power

character,

and

circuits

classification

flow

using

ML

models.
2)

Comprehensive

detecting

performance

evaluation

for

both

supervised

and

unsupervised

ML

modes

in

terms

of

the

effects

of

features

and

time

consuming.
3)

Fully

implementation

and

case

study

of

a

MC8051

micro-controller

on

Altera

FPGA

with

open

source

HTs

benchmarks.

1　 Related

works
　 　 Nondestructive

HTs

detection

approaches

performed

at

design

and

test

time

and

can

be

classified

into:

1)

Logic

testing,

which

depends

on

rare

conditions

and

tests

the

effect

of

HTs

in

logic

values

on

outputs[10-11] .

2)

Side-channel

analysis,

which

is

based

on

side-channel

parameters

including

transient

signals[2] ,

leakage

currents[3-4] ,

timing

delay[12] ,

regional

supply

currents[13] ,

electromagnetic

radiation[5],

as

well

as

multi-parameter

combinations[14]

to

identify

malicious

modifications

in

design.

However,

triggering

complex

or

mix-signal

Trojans

increase

the

challenge

to

use

methods

in

logic

testing.

For

other

approaches

using

side-channel

data,

the

effectiveness

is

questioned

when

dealing

with

stealthy

aging

Trojans

which

target

to

violate

runtime

operations[15] .
Therefore,

researchers

proposed

works

to

do

lifetime

HTs

testing

by

adding

build-in

sensor

in

circuit[16] ,

or

managing

dynamic

thermal

distribution[17] .

These

techniques

monitored

specific

properties

under

specific

conditions,

which

required

precise

calibration

to

match

the

environmental

changes.

In

recent

past,

machine

learning

algorithms

attracted

wide

attentions

from

industry

and

academia

in

the

context

of

efficient

HTs

detection.

Jap

et

al. [18]

used

support

vector

machine
(SVM)

and

unsupervised

model

to

detect

leakage

of

594

中国科学院大学学报 第 38 卷

AES

by

EM

measurement.

Bao

et

al. [19]

classified

the

IC

images

of

benchmark

circuits

with

K-Means

clustering

and

SVM.

Lodhi

et

al. [20]

trained

the

timing

signature

with

four

different

algorithms.

Xue

et

al. [21]

provided

a

classification-based

detection

technique

with

error

weight-adjusting

and

cost

balance.

Tomotaka

et

al. [22]

compared

the

classification

results

of

SVM

on

Hardware

Trojan

with

and

without

trigger

circuits.

All

of

these

works

either

targeted

to

stand

alone

IPs

or

separated

benchmark

circuits.

Cases

involving

firmware

processing

can

be

extremely

different,

which

still

have

a

lot

of

open

topics

in

HTs

detection

realm,

especially

in

features

extraction

and

classifying

method

selection.

Lodhi

et

al. [23]

proposed

a

method

using

instruction-level

power

profile

to

classify

chip

behaviors

at

run-time

test

but

did

not

consider

the

effect

of

various

feature

conditions

in

their

method

and

lacked

comparison

of

different

ML

algorithms.

2　 Detection

methodology

and

feature

set

generation
2. 1　 Side-channel

HTs

detection
In

this

paper,

we

apply

the

IDDT-IDDQ

method

to

reduce

the

impact

of

both

intra-die

and

inter-die

process

variations

(PV)

in

detection[2-3,14] .

Due

to

the

principle

of

methodology,

we

assume

the

presence

of

a

golden

power

model

of

a

genuine

chip

(or

layout)

in

all

ML

models

except

one-class

SVM.

The

paper

focus

mainly

on

the

instruction-level

behavior

and

test

efficiency.
Another

assumption

is

that

the

HTs

adds /
removes

digital

logics

without

violating

the

chip

specification.

This

is

rational

because

all

the

Trojan

benchmarks

we

used

are

well

designed

and

inserted

in

internal

RTL

netlists.

Therefore,

the

power

introduced

by

HTs

is

independent

from

noise

and

genuine

current
 [3,14] .

Since

the

noise

can

be

minimized

by

using

Monte

Carlo

method,

the

differences

in

target

chip

exist

only

in

different

test

features.
2. 2　 Feature

set

generation
In

order

to

overcome

the

aforementioned

shortcomings

and

to

exploit

the

feature

dependencies

in

ML

algorithms,

feature

sets

are

generated

in

order

to

extract

power

character.
1)

Instruction

Difference:

The

first

feature

is

instruction-type,

which

determines

the

basic

operation.

The

most

typical

21

instructions

(in

7

types)

of

MC8051

micro-controller

with

different

operands

are

selected[24] ,

as

shown

in

Fig. 1.

Fig. 1　 Instruction

set

in

use

2)

HTs

Difference:

Since

the

structure

of

HTs

and

the

way

they

attack

the

circuit

can

act

extremely

various

behaviors

in

operations,

a

learning

model

needs

to

measure

the

differences

to

enhance

its

classification.

Therefore,

the

2nd

feature

is

the

HTs

type.

The

Five

Trojans

benchmarks

come

from

Trust-Hub[25] ,

all

of

which

are

low

probability

runtime

activating

HTs.

The

first

3

HTs

(HT1-
HT3)

add

extra

logics,

and

the

last

2

HTs

(HT4)

disable / replace

some

logics

of

the

original

design.

The

detailed

descriptions

are

shown

in

Table

1.

3　 ML

models

and

framework
3. 1　 Machine

learning

models

initialization
Five

typical

classification

ML

models

are

formulated

to

learn

the

power

character,

including

four

supervised

methods:

k-Nearest

Neighbors

(k-
NN),

Naïve

Bayes

(Bayes),

AdaBoost

with

Decision

694

第 4 期 LI

Ying,

et

al:

Efficient

machine

learning

methods

for

hardware

Trojan

detection

using

instruction-level……

　 　 Table

1　 HTs

benchmarks
name description trigger

type payload

type
HT1 MC8051-T200,

the

Trojan

activates

the

internal

timers

of

8051

in

the

idle

mode internal

sequential

logic denial

of

service

HT2 MC8051-T300,

the

Trojan

is

triggered

when

8051

sends

a

specific

string

of

data

through

UART.

In

order

to

block

receiving

any

message

through

UART internal

sequential

logic denial

of

service

HT3 MC8051-T500,

the

Trojan

trigger

detects

a

specific

command,

and

the

Trojan

payload

replaces

specific

data

after

Trojan

activation internal

state

machine

condition change

function

HT4 MC8051-T600,

the

Trojan

disables

any

jump

in

algorithms

running

by

the

micro-
controller external

combination

condition disable

function

HT5 MC8051-T700,

the

Trojan

replaces

some

input

data

with

some

predefined

data internal

state

machine

condition replace

function

Tree

(AdaBoost-DT),

two

classes-SVM

(SVM-2C)

and

one

unsupervised

method:

one

class-SVM

(SVM-1C).

They

stand

for

the

four

main

ML

theories

in

outlier

detection

field:

distance

based,

statistical

based,

tree

based,

and

SVM.

The

initialization

of

the

models

are:
1)

In

k-NN

classification,

the

number

of

nearest

neighbors

k,

distance

metric,

and

classification

rule

are

basic

issues

in

consideration.

Euclidean

distance

is

applied

as

distance

metric

to

measure

the

differences

between

data

samples.

And

the

majority

voting

is

selected

as

classification

rule.

The

value

of

k

is

determined

by

the

feedback

of

cross

validation.
2)

Naïve

Bayes

classifier

is

a

highly

practical

Bayesian

learning

method

with

assumption

of

conditional

independence.

The

trained

classifier

outputs

the

best

result

based

on

posterior

probability.
3)

DT

learning

is

a

basic

classifier

which

uses

a

predictive

model

to

form

observations

about

an

item

(branch)

and

conclusions

about

its

target

value

(leaf) .

In

our

model,

an

adaptive

fitting

(AdaBoost)

is

further

applied

into

training

and

decision

making

phase

to

reduce

bias

and

variance

in

advance.

The

value

of

DT

classifier

gets

from

gradient

descent

in

application.
4)

SVM

is

a

popular

classification

method,

which

finds

the

separator

maximum

margin

hyperplane

of

train

data.

We

apply

LIBSVM[26]

library

to

calculate

the

margin.

A

linear

kernel

function

is

implanted

to

balance

the

classification

result

and

time

consuming,

and

the

parameter

costis

set

to

a

small

number

in

order

to

increase

the

tolerance

of

miss-classified

boundary

data.

Both

the

supervised

and

unsupervised

models

are

built,

in

order

to

compare

the

performances

with

Golden

model

or

not.

In

unsupervised

SVM-1C,

the

training

stage

uses

random

selected

unknown

data

set,

and

the

testing

stage

used

the

rest

part.
3. 2　 Framework

The

proposed

framework

consists

of

five

major

stages

(as

shown

in

Fig. 2).

Fig. 2　 The

proposed

framework

3. 2. 1　 Preprocessing
The

aim

of

preprocessing

is

to

obtain

feature

constrained

power

character.

The

main

steps

include:

1)

Apply

the

instructions

as

preload

commands

(test

vectors)

to

the

target

designs

and

run

implementations

separately.
2)

Extract

and

collect

respective

power

data.

794

中国科学院大学学报 第 38 卷

Then

normalize

each

character

to

fit

the

learning

algorithms.
3. 2. 2　 Sampling

The

aim

of

sampling

is

to

treat

the

extracting

characters

independently

and

randomly

for

valuable

model

training.

The

main

steps

include:
1)

Select

one

mode

from

the

following

four:

instruction-sensitive

(Mode1),

HTs-sensitive

(Mode2),

instruction

&

HTs-sensitive

(Mode3),

and

none-sensitive

(Mode4).
2)

In

each

mode,

randomly

divide

the

extracting

characters

into

mutually

exclusive

n

subsets

(based

on

a

defined

rate).

Some

sets

are

treated

as

training

data,

others

as

testing

data.

For

simulation

convenience,

we

mainly

use

two

ways:

①

Randomly

pick

the

whole

data

group

from

a

single

HTs

benchmark

as

testing

data

(Mode2

and

Mode3).

②

Randomly

select

a

portion

of

data

as

testing

sample

(Mode1

and

Mode4).
3)

Design

an

effective

Standardization

to

accelerate

convergence,

and

avoid

different

feature

scales

dominating

the

classification.
3. 2. 3　 Training

Get

trained

models

from

the

selected

vectors

using

ML

algorithms.

The

main

steps

include:
a)

Set

initial

value

for

each

parameter,

and

label

the

normalized

power

characters

for

training

as

genuine

and

Trojan-inserted

(if

necessary).
b)

Apply

the

selected

Mode

into

the

ML

algorithms

and

train

the

learning

model

separately.
3. 2. 4　 Testing

Evaluate

and

optimize

the

trained

model

using

test

data

with

labels.

The

main

steps

include:
1)

Input

test

data

into

the

trained

model,

calculate

mathematical

results

and

produce

the

margin

between

two

classes.
2)

Classify

the

test

data

based

on

the

above

margin

in

each

algorithm.
3)

Run

m

iterations

in

each

sampling

case

as

cross

validation.

Compare

the

classification

results

with

known

labels.

Count

the

true

negative

and

true

positive

and

calculate

the

accuracy.

If

the

result

exceeds

the

pre-defined

rate,

the

model

will

optimize

realtive

parameters

and

restart

another

iteration.
3. 2. 5　 Making

decision
This

stage

is

to

calculate

the

overall

performance,

and

provide

the

final

label

for

each

design

under

test.

The

main

steps

include:
1)

Rank

the

algorithms

by

accuracy

and

sensitivities

to

feature

conditions.
2)

Output

the

final

evaluating

decision

(Trojan-
insert

or

not)

for

each

design

under

test.

4　 Experimental

results

and

analysis
　 　 In

order

to

evaluate

the

proposed

method,

we

used

the

EDA-CAS

SOC / IP

Evaluation

Prototype

Board

v2. 0

to

do

experiments.

The

FPGA

device

on

the

board

is

Altera

Stratix Ⅱ

EP2S130F150814

fabricated

in

90 nm

CMOS

technology.

The

genuine

and

HTs

benchmark

circuits

of

MC8051

micro-
controller

were

implemented

on

the

platform

via

Quartus

Ⅱ

version

11. 0,

separately.

The

input

synchronized

clock

is

22. 42 MHz

and

the

test

vectors

are

the

same

for

all

test

cases.

The

power

characters

were

extracted

by

using

the

power

analyzing

tool

PowerPlay

in

post-gate-level

simulation.

We

did

not

trigger

any

HTs

in

all

test

cases. Table

2

shows

the

number

of

observations

in

training

and

test

data

set

in

in

all

test

modes.

Table

2　 Number

of

observations

in

each

learning

case
k-NN,

Bayes,
A-DT

SVM-2C SVM-1C

train test train test train test

Mode1

0. 1 44 　 4 29 　 3 21 11
0. 2 39 9 26 6 19 13
0. 3 34 14 23 9 16 16
0. 4 29 19 20 12 14 18

Mode2 725 145 435 145 290 145
Mode3 40 8 24 8 16 8

Mode4

0. 1 783 87 522 58 391 189
0. 2 696 174 464 116 348 232
0. 3 609 261 406 174 304 276
0. 4 522 348 348 232 261 319

　 　 We

used

different

sampling

ratios

in

Mode1

and

Mode4

(from

0. 1

to

0. 4)

to

investigate

the

performance

versus

data

amount.

Moreover,

in

order

to

decline

the

possibility

of

most

training

data

could

come

from

one

same

class

due

to

small

data

amount

in

Mode1

and

Mode3,

only

those

successful

running

894

第 4 期 LI

Ying,

et

al:

Efficient

machine

learning

methods

for

hardware

Trojan

detection

using

instruction-level……

results

account

for

the

accuracy.
The

classification

results

of

Mode1

are

shown

in

Fig. 3

(a)-3(e).

Each

radar

figure

represents

the

ML

algorithm ’ s

detection

accuracy

of

relative

instructions,

which

also

can

be

seen

as

the

different

effects

of

feature

1

(instruction

type

difference).

The

accuracy

is

calculated

as

number

of

correctly

labeled

observations

in

total

labeled

observations.

All

the

supervised

learning

algorithms

get

satisfied

performances,

but

the

unsupervised

method

only

correctly

detects

different

instructions

range

from

28%

to

72% .

Fig. 3　 Detection

accuracy

of

different

instructions

in

Mode1

　 　 Figure

4

shows

the

detection

accuracy

in

relative

HTs

of

Mode2.

In

the

results

of

HT2-HT5,

we

obtained

100%

accuracy

in

all

supervised

algorithms.

However,

we

almost

failed

in

HT1

test

except

for

Bayes

method.

This

is

because

the

offset

between

HT1

and

the

genuine

chip

is

very

small,

which

is

hard

to

separate

by

most

classifiers.

Since

Bayes

uses

probability

instead

of

distance

or

boundary

to

do

calculation,

it

presents

the

best

performance

in

this

mode.

The

unsupervised

SVM-
1C

can

only

detect

HT3

correctly

because

it

is

the

largest

Trojan

circuit.

Fig. 4　 Detection

accuracy

of

different

HTs

in

Mode2

　 　 In

instruction

&

HTs-sensitive

mode

(Mode3),

the

combination

effect

of

both

instruction

and

HTs

quantifies

the

mix

sensitivity.

We

summary

the

test

average

accuracy,

994

中国科学院大学学报 第 38 卷

instruction

sensitivity

(Instr-Sens),

HTs

sensitivity

(HTs-Sens),

and

mix

sensitivity

of

both

two

features

(Mix-Sens)

for

Mod

1

to

Mod

3

in

Table

3.

From

the

results,

we

have

the

following

learnings.

Table

3　 Average

accuracy

and

feature

sensitivity

result

for

Mode1-3

ML

method
Mode1 Mode2 Mode3

accuracy / % Instr-Sens accuracy / % HTs-Sens accuracy / % Mix-Sens
k-NN 96. 6 0. 13 80. 0 0. 45 81. 0 0. 43
Bayes 96. 9 0. 05 97. 1 0. 06 100. 0 0
AdaBoost-DT 81. 4 0. 18 81. 1 0. 42 80. 0 0. 44
SVM-2C 89. 4 0. 11 80. 0 0. 45 80. 0 0. 45
SVM-1C 45. 5 0. 20 21. 1 0. 44 31. 0 0. 61

　 　 1)

Bayes

is

the

least

interfered

method

by

both

features

and

gets

the

highest

accuracy

in

all

Modes.

Therefore,

the

Bayes

methods

can

be

considered

as

a

premium

choice

when

there

is

few

knowledge

about

any

features.
2)

Other

supervised

methods,

including

k-NN,

AdaBoost-DT

and

SVM-2C,

are

more

sensitive

to

HTs

types

rather

than

instructions.

SVM-1C

performs

nearly

equal

to

the

two

features.
None-sensitive

(Mode4)

can

be

seen

as

a

rough

learning

mode,

the

accuracy

in

different

test

sampling

ratios

is

showed

in

Table

4.

In

Mode4,

since

the

training

and

test

sets

are

determined

by

a

random

vector,

the

classification

and

accuracy

results

are

averaged

by

five

running

trails.

Table

4　 Detection

accuracy

in

Mode4 %

test

sampling

ratio
0. 1 0. 2 0. 3 0. 4 average

k-NN 96. 6 95. 9 96. 4 96. 4 96. 3
Bayes 95. 2 96. 0 95. 1 95. 1 95. 4
AdaBoost-DT 81. 6 82. 5 82. 9 82. 9 82. 5
SVM-2C 97. 9 98. 4 97. 6 97. 6 97. 9
SVM-1C 19. 5 17. 2 53. 2 19. 8 27. 4

　 　 In

order

to

compare

the

performances

with

reference[23] ,

we

infer

they

performed

a

coarse

sampling

process,

which

is

similar

with

our

Mode4.

They

had

accuracy

results

of

99. 02%

for

k-NN

and

86. 46%

for

Bayes,

respectively,

while

both

results

in

our

experiment

are

no

less

than

95. 0% .
According

to

the

result,

SVM-2C

performs

the

best

in

Mode4.

Because

under

one

instruction,

different

power

characters

produced

by

different

Trojan

circuits

are

more

linearly

separable,

which

is

the

favor

condition

of

SVM.

The

computing

environment

is

Intel

i5-2400

CPU

with

3. 10 GHz

main

frequency.

The

formalized

time

consuming

in

all

tests

and

modes

are

shown

in

Table

5.

Based

on

the

results,

SVM-2C

consumes

the

shortest

time

to

finish

the

computation,

which

makes

it

a

competitive

option

for

further

hardware

implementations.

Table

5　 Computing

time

in

all

modes s

Mode1 Mode2 Mode3 Mode4 average

k-NN 0. 128 5 0. 277 3 0. 148 9 0. 213 0 0. 191 9

Bayes 0. 121 6 0. 016 8 0. 137 3 0. 011 0 0. 071 7

Ada-Boost 0. 584 1 0. 102 5 0. 620 6 0. 084 5 0. 347 9

SVM-2C 0. 090 6 0. 008 9 0. 05 0. 012 2 0. 040 4

SVM-1C 0. 130 7 0. 070 9 0. 115 5 0. 090 7 0. 102 0

　 　 From

all

of

the

test

results,

we

can

summarize:
1)

The

power

character

of

a

Trojan-insert

chip

which

is

close

to

genuine

one

rather

than

other

HTs

cannot

be

efficiently

detected

in

k-NN,

AdaBoost-
DT

and

SVM

(like

HT1

in

test) .
2)

The

affections

of

HTs

are

usually

bigger

than

instructions

to

all

ML

methods,

and

Bayes

is

proved

to

be

the

prospective

algorithm

in

term

of

accuracy

in

both

instructions

and

HTs

changing

situations.
3)

Since

SVM

gets

comparable

performance

and

consumes

the

shortest

time

to

finish

the

learning

loop

in

average,

it

can

be

considered

as

an

efficient

hardware

model

to

insert

in

chips.
4)

For

one-class

SVM,

the

detection

accuracy

results

in

all

test

modes

are

much

lower

than

supervised

ones

due

to

the

influence

of

uncertain

decision

boundary

from

unknown

mixed

classesin

005

第 4 期 LI

Ying,

et

al:

Efficient

machine

learning

methods

for

hardware

Trojan

detection

using

instruction-level……

both

train

and

test

phase.

However,

we

constructed

an

Harsh

learning

condition

in

the

experiment

because

the

overall

percentage

of

genuine

data

is

only

16. 7% ,

which

is

almost

impossible

in

practice.

But

it

can

still

detect

some

HTs

without

golden

reference,

which

also

makes

it

a

competitive

alternative

in

application.

5　 Conclusion
　 　 Detection

of

stealthy

Hardware

Trojans

violating

runtime

operations

is

significantly

challenging.

In

this

paper,

we

propose

a

ML

involved

framework

to

classify

the

genuine

and

Trojan-insert

circuit

using

characterized

side-channel

power

in

instruction-
level.

Various

features

including

instruction

and

Trojan

types

are

well-extracted

to

construct

exclusive

feature

sets.

Experimental

results

on

Altera

FPGA

represented

that

distinct

ML

methods

have

different

sensitivities

to

the

features,

which

can

greatly

fluctuate

the

accuracy.

Naïve

Bayes

reached

the

best

average

accuracy,

and

the

SVM-2C

consumed

the

shortest

CPU

running

time.

We

also

proved

that

the

unsupervised

one-class

SVM

can

detect

HTs

without

golden

reference

in

the

range

of

17%

to

72%

even

in

Harsh

condition.
In

the

future,

the

optimized

classification

ML

methods

can

be

inserted

into

chips

after

getting

well-
trained

to

predict

unknown

HTs

in

order

to

accomplish

real

runtime

detection.

References
[1]　 Tehranipoor

M,

Koushanfar

F.

A

survey

of

hardware

Trojan

taxonomy

&

detection [J] .

IEEE

Design

&

Test

of

Computers,

2010,

27(1):

10-25.

[2] 　 Rad

R,

Plusquellic

J,

Tehranipoor

M.

Sensitivity

analysis

to

hardware

Trojans

using

power

supply

transient

signals[C] ∥

2018

IEEE

International

Workshop

on

Hardware-Oriented

Security

and

Trust.

Anaheim,CA,USA:

IEEE

Press,

2008:

3-7.

[3] 　 Hou

B,

He

C

H,

Wang

L

W,

et

al.

Hardware

Trojan

detection

via

current

measurement:

a

method

immune

to

process

variation

effects [C] ∥ 2014

10th

International

Conference

on

Reliability, Maintainability

and

Safely

(ICRMS).

Guangzhou:

IEEE

Press,

2015:

1039-1042.

[4] 　 Aarestad

J,

Acharyya

D,

Rad

R,

et

al.

Detecting

Trojans

through

leakage

current

analysis

using

multiple

supply

pad

IDDQs [J] .

IEEE

Transactions

on

Information

Forensics

and

Security,

2010,

5(4):

893-904.

[5] 　 He

J

J,

Zhao

Y

Q,

Guo

X

L,

et

al.

Hardware

Trojan

detection

through

chip-free

electromagnetic

side-channel

statistical

analysis [J].

IEEE

Transactions

on

Very

Large

Scale

Integration

(VLSI)

Systems,

2017,25(10):

2939-2948.

[6] 　 Koushanfar

F,

Potkonjak

M.

CAD-based

security,

cryptography,

and

digital

rights

management[C]∥2007

44th

ACM / IEEE

Design

Automation

Conference.

San

Diego,CA,

USA:

IEEE

Press,

2007:

268-269.

[7] 　 Wei

S,

Potkonjak

M.

Scalable

consistency-based

hardware

Trojan

detection

and

diagnosis [C] ∥ 2011

5th

IEEE

International

Conference

on

Network

and

System

Security.

Milan,Italy:

IEEE

Press,

2011:

176-183.

[8] 　 Liu

Y,

Jin

Y

E,

Nosratinia

A,

et

al.

Silicon

demonstration

of

hardware

Trojan

design

and

detection

in

wireless

cryptographic

ICs[J] .

IEEE

Transactions

on

Very

Large

Scale

Integration

(VLSI)

Systems,

2017,

25(4):

1506-1519.

[9] 　 Karimi

N,

Kanuparthi

A

K,

Wang

X

Y,

et

al.

MAGIC:

malicious

aging

in

circuits / cores[J] .

ACM

Transactions

on

Architecture

and

Code

Optimization,

2015,

12(1):

1-25.

[10] 　 Wang

X

X,

Tehranipoor

M,

Plusquellic

J.

Detecting

malicious

inclusions

in

secure

hardware:

challenges

and

solutions [C] ∥ 2008

IEEE

International

Workshop

on

Hardware-Oriented

Security

and

Trust.

Anaheim, CA, USA:

IEEE

Press,

2008:

15-19.
[11] 　 Chakraborty

R

S,

Wolff

F,

Paul

S,

et

al.

MERO:

A

statistical

approach

for

hardware

Trojan

detection [C] ∥11th

International

Workshop

on

Cryptographic

Hardware

and

Embedded

Systems.

Lansanne,

Switzerland:

Springer,

2009:

396-410.

[12] 　 Rai

D,

Lach

J.

Performance

of

delay-based

Trojan

detection

techniques

under

parameter

variations [C] ∥ 2009

IEEE

International

Workshop

on

Hardware-Oriented

Security

and

Trust.

San

Francisco,CA,USA:

IEEE

Press,

2009:

58-65.

[13] 　 Li

X,

Wang

X,

Zhang

Y,

et

al.

Hardware

trojan

detection

method

based

on

multiple

side-channels

analysis [J] .

Computer

Simulation,

2015,

32 (3):

216-219. (in

Chinese) .

[14] 　 Narasimhan

S,

Du

D

D,

Chakraborty

R

S,

et

al.

Hardware

trojan

detection

by

multiple-parameter

side-channel

analysis

[J] .

IEEE

Transactions

on

Computers,

2013,

62 (11):

2183-2195.

[15] 　 Salmani

H,

Tehranipoor

M,

Plusquellic

J.

A

layout-aware

approach

for

improving

localized

switching

to

detect

hardware

Trojans

in

integrated

circuits[C] ∥2010

IEEE

International

Workshop

on

Information

Forensics

and

Security.

Seattle,

WA,USA:

IEEE

Press,

2010:

1-6.

[16] 　 Forte

D,

Bao

C

X,

Srivastava

A.

Temperature

tracking:

An

innovative

run-time

approach

for

hardware

Trojan

detection

[C] ∥ 2013

IEEEE / ACM

International

Conference

on

105

中国科学院大学学报 第 38 卷

Computer-Aided

Design(ICCAD).

San

Jose,CA,USA:

IEEE

Press,

2013:

532-539.

[17] 　 Zhao

H,

Kwiat

K,

Kamhoua

C,

et

al.

Applying

chaos

theory

for

runtime

Hardware

Trojan

detection [C] ∥2015

IEEE

Symposium

on

Computational

Intelligence

for

Security

and

Defense

Applications (CISDA).

Verona,

NY,

USA:

IEEE

Press,

2015:

1-6.

[18] 　 Jap

D,

He

W,

Bhasin

S.

Supervised

and

unsupervised

machine

learning

for

side-channel

based

Trojan

detection[C]∥

2016

IEEE

27th

International

Conference

on

Application-

specific

Systems,

Architectures

and

Processors

(ASAP).

London,UK:

IEEE

Press,

2016:

17-24.

[19] 　 Bao

C

X,

Forte

D,

Srivastava

A.

On

reverse

engineering-

based

hardware

Trojan

detection [J] .

IEEE

Transactions

on

Computer-Aided

Design

of

Integrated

Circuits

and

Systems,

2016,

35(1):

49-57.

[20] 　 Lodhi

F

K,

Abbasi

I,

Khalid

F,

et

al.

A

self-learning

framework

to

detect

the

intruded

integrated

circuits[C]∥2016

IEEE

International

Symposium

on

Circuits

and

System

(ISCAS).

Montreal,QC,Canada:

IEEE

Press,

2016:

1702-

1705.

[21] 　 Xue

M

F,

Wang

J,

Hux

A

Q.

An

enhanced

classification-based

golden

chips-free

hardware

Trojan

detection

technique[C]∥2016

IEEE

Asian

Hardware-Oriented

Security

and

Trust

(AsianHOST).

Yilan,Taiwan,China:

IEEE

Press,

2016:

1-6.

[22] 　 Inoue

T,

Hasegawa

K,

Yanagisawa

M,

et

al.

Designing

hardware

Trojans

and

their

detection

based

on

a

SVM-based

approach[C]∥2017

IEEE

12th

International

Conference

on

ASIC

(ASICON).

Guiyang,China:

IEEE

Press,

2017:

811-

814.

[23] 　 Lodhi

F

K,

Hasan

S

R,

Hasan

O,

et

al.

Power

profiling

of

microcontroller′s

instruction

set

for

runtime

hardware

Trojans

detection

without

golden

circuit

models [C] ∥ Design,

Automation

&

Test

in

Europe

Conference

&

Exhibition

(DATE),2017.

Lausanne,Switzerland:

IEEE

Press,

2017:

294-297.

[24] 　 Mazidi

M

A,

Mazidi

J

G,

Mckinlay

R

D.

The

8051

microcontroller

and

embedded

systems

using

assembly

and

C

[M].

2nd

ed.

New

Jersey:

PearsonEducation,

2007.

[25] 　 Tehranipoor

M,

Salamani

H.

trust-HUB.

[CP / OL].

(2006-

03-06)[2019-11-11] .

https:∥www. trust-hub. org / .

[26] 　 Chang

C

C,

Lin

C

J.

LIBSVM:

A

library

for

support

vector

machines[J] .

ACM

Transactions

on

Intelligent

Systems

and

Technology,

2011,

2(3):

1-27.

205

