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Abstract 　 Integrated
 

circuits
 

( IC )
 

are
 

vulnerable
 

to
 

hardware
 

Trojans
 

( HTs )
 

due
 

to
 

the
 

globalization
 

of
 

semiconductor
 

design
 

and
 

outsourcing
 

fabrication.
 

Stealthy
 

HTs
 

which
 

activate
 

malicious
 

aging
 

operations
 

are
 

ususlly
 

hide
 

in
 

normal
 

behaviors. Therefore,
 

it
 

is
 

a
 

challenge
 

to
 

detect
 

those
 

HTs
 

by
 

general
 

test
 

and
 

verification
 

approaches.
 

In
 

this
 

paper,
 

we
 

build
 

an
 

efficient
 

machine
 

learning
 

(ML)
 

framework
 

to
 

classify
 

the
 

genuine
 

and
 

Trojan-insert
 

chips
 

using
 

instruction-level
 

side-
channel

 

power
 

characters.
 

Different
 

instructions
 

and
 

HTs
 

are
 

used
 

as
 

feature
 

sets
 

to
 

construct
 

the
 

algorithm
 

models.
 

In
 

order
 

to
 

evaluate
 

the
 

performance
 

of
 

the
 

method,
 

we
 

implemented
 

five
 

HTs
 

benchmarks
 

of
 

MC8051
 

micro-controller
 

in
 

Altera
 

Stratix
 

II
 

FPGA,
 

and
 

presented
 

analysis
 

on
 

five
 

formulated
 

ML
 

models
 

in
 

both
 

supervised
 

and
 

unsupervised
 

modes.
 

The
 

test
 

results
 

showed
 

that
 

the
 

detection
 

accuracy
 

of
 

supervised
 

Naïve
 

Bayes
 

is
 

95%
 

in
 

average,
 

which
 

is
 

the
 

highest
 

among
 

the
 

ML
 

models.
 

The
 

supervised
 

SVM
 

consumed
 

the
 

shortest
 

running
 

time,
 

with
 

an
 

average
 

of
 

0. 04 s.
 

We
 

also
 

verified
 

that
 

one-class
 

SVM
 

can
 

be
 

a
 

valuable
 

method
 

without
 

golden
 

reference,
 

which
 

has
 

accuracy
 

in
 

the
 

range
 

from
 

17%
 

to
 

72%
 

even
 

in
 

Harsh
 

learning
 

condition.
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指令级功耗特征的硬件木马检测高效机器学习

李莹1,陈岚1,2,佟鑫1

(1
 

中国科学院微电子研究所,
 

北京
 

100029;2
 

三维及纳米集成电路设计自动化技术北京市重点实验室,
 

北京
 

100029)

摘　 要　 由于半导体产业的设计和外包代工制造全球化趋势,使得集成电路容易受到硬件木

马造成的严峻威胁。 基于电路退化模型等的隐秘硬件木马通常将恶意行为隐藏在正常的芯片
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行为中,从而难以被传统的测试和验证方法发现。 建立一个高效的机器学习框架,利用指令级

侧信道功耗特征对无木马和插入木马的芯片电路进行分类。 算法模型采用不同的指令和木马

构造提取的特征向量集。 为评估检测方法性能,在 Altera
 

Stratix
 

Ⅱ
 

FPGA 中实现基于 MC8051
微控制器的基准电路,并详细分析在有监督和无监督模式下的 5 种机器学习算法模型。 测试

结果表明,综合各种特征条件,有监督的朴素贝叶斯方法检测准确率最高,平均为 95% ,有监

督的支持向量机方法运行时间最短,平均为 0. 04 s。 另外验证了无监督的支持向量机可以作

为一种没有黄金参考模型下的有价值方法,即使在恶劣训练条件下,其检测准确率也在

17% ~ 72% 。
关键词　 硬件木马;机器学习;旁路功耗;指令级;检测

　 　 The
 

trend
 

of
 

globalization,
 

outsourcing
 

and
 

split
 

fabrication
 

give
 

the
 

attackers
 

more
 

opportunities
 

to
 

tamper
 

the
 

IC
 

design
 

with
 

hardware
 

Trojans
 

(HTs).
 

Such
 

malicious
 

circuits
 

can
 

be
 

implanted
 

either
 

during
 

the
 

design
 

or
 

manufacturing
 

phase,
 

which
 

enable
 

the
 

adversary
 

to
 

spy
 

confidential
 

contents,
 

control,
 

monitor
 

kernel
 

functions
 

or
 

deny
 

service
 

in
 

systems[1] .
Since

 

in
 

2005,
 

DARPA
 

issued
 

its
 

1st
 

program
 

for
 

hardware
 

systems
 

security,
 

many
 

HTs
 

detection
 

techniques
 

have
 

been
 

proposed.
 

Nondestructive
 

methods,
 

especially
 

side-channel
 

parameter
 

measurements
 

have
 

received
 

a
 

lot
 

of
 

attention[2-13] .
 

However,
 

in
 

a
 

system
 

chip,
 

the
 

activating
 

impact
 

of
 

HTs
 

under
 

certain
 

pattern
 

can
 

be
 

so
 

small
 

that
 

hide
 

in
 

normal
 

functions.
 

The
 

stealthy
 

ones
 

with
 

aging
 

triggers,
 

which
 

control
 

the
 

lifetime
 

of
 

a
 

circuit
 

by
 

counters
 

or
 

timers
 

and
 

violate
 

runtime
 

operations,
 

can
 

even
 

bypass
 

the
 

normal
 

verification
 

phase[8-9] .
 

All
 

of
 

the
 

above
 

reasons
 

significantly
 

overwhelmed
 

the
 

performance
 

of
 

side-channel
 

detection.
 

Thus,
 

efficient
 

detection
 

methods
 

from
 

system
 

operational
 

level
 

should
 

be
 

considered.
 

This
 

paper
 

introduces
 

a
 

solution
 

by
 

using
 

machine
 

learning
 

( ML)
 

algorithms
 

to
 

learn
 

side-
channel

 

power
 

characters
 

in
 

instruction-level
 

and
 

classify
 

the
 

genuine
 

and
 

Trojan-insert
 

circuits.
 

The
 

paper
 

mainly
 

contributes
 

as:
1)

 

A
 

creative
 

framework
 

includes
 

feature
 

set
 

generation
 

to
 

extract
 

learnable
 

instruction-level
 

power
 

character,
 

and
 

circuits
 

classification
 

flow
 

using
 

ML
 

models.
2 )

 

Comprehensive
 

detecting
 

performance
 

evaluation
 

for
 

both
 

supervised
 

and
 

unsupervised
 

ML
 

modes
 

in
 

terms
 

of
 

the
 

effects
 

of
 

features
 

and
 

time
 

consuming.
3)

 

Fully
 

implementation
 

and
 

case
 

study
 

of
 

a
 

MC8051
 

micro-controller
 

on
 

Altera
 

FPGA
 

with
 

open
 

source
 

HTs
 

benchmarks.
 

1　 Related
 

works
　 　 Nondestructive

 

HTs
 

detection
 

approaches
 

performed
 

at
 

design
 

and
 

test
 

time
 

and
 

can
 

be
 

classified
 

into:
 

1)
 

Logic
 

testing,
 

which
 

depends
 

on
 

rare
 

conditions
 

and
 

tests
 

the
 

effect
 

of
 

HTs
 

in
 

logic
 

values
 

on
 

outputs[10-11] .
 

2)
 

Side-channel
 

analysis,
 

which
 

is
 

based
 

on
 

side-channel
 

parameters
 

including
 

transient
 

signals[2] ,
 

leakage
 

currents[3-4] ,
 

timing
 

delay[12] ,
 

regional
 

supply
 

currents[13] ,
 

electromagnetic
 

radiation[5],
 

as
 

well
 

as
 

multi-parameter
 

combinations[14]
 

to
 

identify
 

malicious
 

modifications
 

in
 

design.
 

However,
 

triggering
 

complex
 

or
 

mix-signal
 

Trojans
 

increase
 

the
 

challenge
 

to
 

use
 

methods
 

in
 

logic
 

testing.
 

For
 

other
 

approaches
 

using
 

side-channel
 

data,
 

the
 

effectiveness
 

is
 

questioned
 

when
 

dealing
 

with
 

stealthy
 

aging
 

Trojans
 

which
 

target
 

to
 

violate
 

runtime
 

operations[15] .
Therefore,

 

researchers
 

proposed
 

works
 

to
 

do
 

lifetime
 

HTs
 

testing
 

by
 

adding
 

build-in
 

sensor
 

in
 

circuit[16] ,
 

or
 

managing
 

dynamic
 

thermal
 

distribution[17] .
 

These
 

techniques
 

monitored
 

specific
 

properties
 

under
 

specific
 

conditions,
 

which
 

required
 

precise
 

calibration
 

to
 

match
 

the
 

environmental
 

changes.
 

In
 

recent
 

past,
 

machine
 

learning
 

algorithms
 

attracted
 

wide
 

attentions
 

from
 

industry
 

and
 

academia
 

in
 

the
 

context
 

of
 

efficient
 

HTs
 

detection.
 

Jap
 

et
 

al. [18]
 

used
 

support
 

vector
 

machine
(SVM)

 

and
 

unsupervised
 

model
 

to
 

detect
 

leakage
 

of
 

594
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AES
 

by
 

EM
 

measurement.
 

Bao
 

et
 

al. [19]
 

classified
 

the
 

IC
 

images
 

of
 

benchmark
 

circuits
 

with
 

K-Means
 

clustering
 

and
 

SVM.
 

Lodhi
 

et
 

al. [20]
 

trained
 

the
 

timing
 

signature
 

with
 

four
 

different
 

algorithms.
 

Xue
 

et
 

al. [21]
 

provided
 

a
 

classification-based
 

detection
 

technique
 

with
 

error
 

weight-adjusting
 

and
 

cost
 

balance.
 

Tomotaka
 

et
 

al. [22]
 

compared
 

the
 

classification
 

results
 

of
 

SVM
 

on
 

Hardware
 

Trojan
 

with
 

and
 

without
 

trigger
 

circuits.
 

All
 

of
 

these
 

works
 

either
 

targeted
 

to
 

stand
 

alone
 

IPs
 

or
 

separated
 

benchmark
 

circuits.
 

Cases
 

involving
 

firmware
 

processing
 

can
 

be
 

extremely
 

different,
 

which
 

still
 

have
 

a
 

lot
 

of
 

open
 

topics
 

in
 

HTs
 

detection
 

realm,
 

especially
 

in
 

features
 

extraction
 

and
 

classifying
 

method
 

selection.
 

Lodhi
 

et
 

al. [23]
 

proposed
 

a
 

method
 

using
 

instruction-level
 

power
 

profile
 

to
 

classify
 

chip
 

behaviors
 

at
 

run-time
 

test
 

but
 

did
 

not
 

consider
 

the
 

effect
 

of
 

various
 

feature
 

conditions
 

in
 

their
 

method
 

and
 

lacked
 

comparison
 

of
 

different
 

ML
 

algorithms.

2　 Detection
 

methodology
 

and
 

feature
 

set
 

generation
2. 1　 Side-channel

 

HTs
 

detection
In

 

this
 

paper,
 

we
 

apply
 

the
 

IDDT-IDDQ
 

method
 

to
 

reduce
 

the
 

impact
 

of
 

both
 

intra-die
 

and
 

inter-die
 

process
 

variations
 

(PV)
 

in
 

detection[2-3,14] .
 

Due
 

to
 

the
 

principle
 

of
 

methodology,
 

we
 

assume
 

the
 

presence
 

of
 

a
 

golden
 

power
 

model
 

of
 

a
 

genuine
 

chip
 

(or
 

layout)
 

in
 

all
 

ML
 

models
 

except
 

one-class
 

SVM.
 

The
 

paper
 

focus
 

mainly
 

on
 

the
 

instruction-level
 

behavior
 

and
 

test
 

efficiency.
Another

 

assumption
 

is
 

that
 

the
 

HTs
 

adds /
removes

 

digital
 

logics
 

without
 

violating
 

the
 

chip
 

specification.
 

This
 

is
 

rational
 

because
 

all
 

the
 

Trojan
 

benchmarks
 

we
 

used
 

are
 

well
 

designed
 

and
 

inserted
 

in
 

internal
 

RTL
 

netlists.
 

Therefore,
 

the
 

power
 

introduced
 

by
 

HTs
 

is
 

independent
 

from
 

noise
 

and
 

genuine
 

current
 [3,14] .

 

Since
 

the
 

noise
 

can
 

be
 

minimized
 

by
 

using
 

Monte
 

Carlo
 

method,
 

the
 

differences
 

in
 

target
 

chip
 

exist
 

only
 

in
 

different
 

test
 

features.
2. 2　 Feature

 

set
 

generation
In

 

order
 

to
 

overcome
 

the
 

aforementioned
 

shortcomings
 

and
 

to
 

exploit
 

the
 

feature
 

dependencies
 

in
 

ML
 

algorithms,
 

feature
 

sets
 

are
 

generated
 

in
 

order
 

to
 

extract
 

power
 

character.
1)

 

Instruction
 

Difference:
 

The
 

first
 

feature
 

is
 

instruction-type,
 

which
 

determines
 

the
 

basic
 

operation.
 

The
 

most
 

typical
 

21
 

instructions
 

( in
 

7
 

types)
 

of
 

MC8051
 

micro-controller
 

with
 

different
 

operands
 

are
 

selected[24] ,
 

as
 

shown
 

in
 

Fig. 1.

Fig. 1　 Instruction
 

set
 

in
 

use

2)
 

HTs
 

Difference:
 

Since
 

the
 

structure
 

of
 

HTs
 

and
 

the
 

way
 

they
 

attack
 

the
 

circuit
 

can
 

act
 

extremely
 

various
 

behaviors
 

in
 

operations,
 

a
 

learning
 

model
 

needs
 

to
 

measure
 

the
 

differences
 

to
 

enhance
 

its
 

classification.
 

Therefore,
 

the
 

2nd
 

feature
 

is
 

the
 

HTs
 

type.
 

The
 

Five
 

Trojans
 

benchmarks
 

come
 

from
 

Trust-Hub[25] ,
 

all
 

of
 

which
 

are
 

low
 

probability
 

runtime
 

activating
 

HTs.
 

The
 

first
 

3
 

HTs
 

( HT1-
HT3)

 

add
 

extra
 

logics,
 

and
 

the
 

last
 

2
 

HTs
 

( HT4)
 

disable / replace
 

some
 

logics
 

of
 

the
 

original
 

design.
 

The
 

detailed
 

descriptions
 

are
 

shown
 

in
 

Table
 

1.

3　 ML
 

models
 

and
 

framework
3. 1　 Machine

 

learning
 

models
 

initialization
Five

 

typical
 

classification
 

ML
 

models
 

are
 

formulated
 

to
 

learn
 

the
 

power
 

character,
 

including
 

four
 

supervised
 

methods:
 

k-Nearest
 

Neighbors
 

( k-
NN),

 

Naïve
 

Bayes
 

(Bayes),
 

AdaBoost
 

with
 

Decision
 

694



第 4 期 LI
  

Ying,
 

et
 

al:
 

Efficient
 

machine
 

learning
 

methods
 

for
 

hardware
 

Trojan
 

detection
 

using
 

instruction-level……

　 　 Table
 

1　 HTs
 

benchmarks
name description trigger

 

type payload
 

type
HT1 MC8051-T200,

 

the
 

Trojan
 

activates
 

the
 

internal
 

timers
 

of
 

8051
 

in
 

the
 

idle
 

mode internal
 

sequential
 

logic denial
 

of
 

service

HT2 MC8051-T300,
 

the
 

Trojan
 

is
 

triggered
 

when
 

8051
 

sends
 

a
 

specific
 

string
 

of
 

data
 

through
 

UART.
 

In
 

order
 

to
 

block
 

receiving
 

any
 

message
 

through
 

UART internal
 

sequential
 

logic denial
 

of
 

service

HT3 MC8051-T500,
 

the
 

Trojan
 

trigger
 

detects
 

a
 

specific
 

command,
 

and
 

the
 

Trojan
 

payload
 

replaces
 

specific
 

data
 

after
 

Trojan
 

activation internal
 

state
 

machine
 

condition change
 

function
 

HT4 MC8051-T600,
 

the
 

Trojan
 

disables
 

any
 

jump
 

in
 

algorithms
 

running
 

by
 

the
 

micro-
controller external

 

combination
 

condition disable
 

function

HT5 MC8051-T700,
 

the
 

Trojan
 

replaces
 

some
 

input
 

data
 

with
 

some
 

predefined
 

data internal
 

state
 

machine
 

condition replace
 

function

Tree
 

(AdaBoost-DT),
 

two
 

classes-SVM
 

(SVM-2C)
 

and
 

one
 

unsupervised
 

method:
 

one
 

class-SVM
 

( SVM-1C ).
 

They
 

stand
 

for
 

the
 

four
 

main
 

ML
 

theories
 

in
 

outlier
 

detection
 

field:
 

distance
 

based,
 

statistical
 

based,
 

tree
 

based,
 

and
 

SVM.
 

The
 

initialization
 

of
 

the
 

models
 

are:
1 )

 

In
 

k-NN
 

classification,
 

the
 

number
 

of
 

nearest
 

neighbors
 

k,
 

distance
 

metric,
 

and
 

classification
 

rule
 

are
 

basic
 

issues
 

in
 

consideration.
 

Euclidean
 

distance
 

is
 

applied
 

as
 

distance
 

metric
 

to
 

measure
 

the
 

differences
 

between
 

data
 

samples.
 

And
 

the
 

majority
 

voting
 

is
 

selected
 

as
 

classification
 

rule.
 

The
 

value
 

of
 

k
 

is
 

determined
 

by
 

the
 

feedback
 

of
 

cross
 

validation.
2)

 

Naïve
 

Bayes
 

classifier
 

is
 

a
 

highly
 

practical
 

Bayesian
 

learning
 

method
 

with
 

assumption
 

of
 

conditional
 

independence.
 

The
 

trained
 

classifier
 

outputs
 

the
 

best
 

result
 

based
 

on
 

posterior
 

probability.
3)

 

DT
 

learning
 

is
 

a
 

basic
 

classifier
 

which
 

uses
 

a
 

predictive
 

model
 

to
 

form
 

observations
 

about
 

an
 

item
 

(branch)
 

and
 

conclusions
 

about
 

its
 

target
 

value
 

( leaf ) .
 

In
 

our
 

model,
 

an
 

adaptive
 

fitting
 

( AdaBoost )
 

is
 

further
 

applied
 

into
 

training
 

and
 

decision
 

making
 

phase
 

to
 

reduce
 

bias
 

and
 

variance
 

in
 

advance.
 

The
 

value
 

of
 

DT
 

classifier
 

gets
 

from
 

gradient
 

descent
 

in
 

application.
4)

 

SVM
 

is
 

a
 

popular
 

classification
 

method,
 

which
 

finds
 

the
 

separator
 

maximum
 

margin
 

hyperplane
 

of
 

train
 

data.
 

We
 

apply
 

LIBSVM[26]
 

library
 

to
 

calculate
 

the
 

margin.
 

A
 

linear
 

kernel
 

function
 

is
 

implanted
 

to
 

balance
 

the
 

classification
 

result
 

and
 

time
 

consuming,
 

and
 

the
 

parameter
 

costis
 

set
 

to
 

a
 

small
 

number
 

in
 

order
 

to
 

increase
 

the
 

tolerance
 

of
 

miss-classified
 

boundary
 

data.
 

Both
 

the
 

supervised
 

and
 

unsupervised
 

models
 

are
 

built,
 

in
 

order
 

to
 

compare
 

the
 

performances
 

with
 

Golden
 

model
 

or
 

not.
 

In
 

unsupervised
 

SVM-1C,
 

the
 

training
 

stage
 

uses
 

random
 

selected
 

unknown
 

data
 

set,
 

and
 

the
 

testing
 

stage
 

used
 

the
 

rest
 

part.
3. 2　 Framework

The
 

proposed
 

framework
 

consists
 

of
 

five
 

major
 

stages
 

(as
 

shown
 

in
 

Fig. 2).

Fig. 2　 The
 

proposed
 

framework

3. 2. 1　 Preprocessing
The

 

aim
 

of
 

preprocessing
 

is
 

to
 

obtain
 

feature
 

constrained
 

power
 

character.
 

The
 

main
 

steps
 

include:

1)
 

Apply
 

the
 

instructions
 

as
 

preload
 

commands
 

( test
 

vectors )
 

to
 

the
 

target
 

designs
 

and
 

run
 

implementations
 

separately.
2)

 

Extract
 

and
 

collect
 

respective
 

power
 

data.
 

794
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Then
 

normalize
 

each
 

character
 

to
 

fit
 

the
 

learning
 

algorithms.
3. 2. 2　 Sampling

The
 

aim
 

of
 

sampling
 

is
 

to
 

treat
 

the
 

extracting
 

characters
 

independently
 

and
 

randomly
 

for
 

valuable
 

model
 

training.
 

The
 

main
 

steps
 

include:
1)

 

Select
 

one
 

mode
 

from
 

the
 

following
 

four:
 

instruction-sensitive
 

( Mode1 ),
 

HTs-sensitive
 

(Mode2),
 

instruction
 

&
 

HTs-sensitive
 

( Mode3),
 

and
 

none-sensitive
 

(Mode4).
2 )

 

In
 

each
 

mode,
 

randomly
 

divide
 

the
 

extracting
 

characters
 

into
 

mutually
 

exclusive
 

n
 

subsets
 

( based
 

on
 

a
 

defined
 

rate).
 

Some
 

sets
 

are
 

treated
 

as
 

training
 

data,
 

others
 

as
 

testing
 

data.
 

For
 

simulation
 

convenience,
 

we
 

mainly
 

use
 

two
 

ways:
 

①
 

Randomly
 

pick
 

the
 

whole
 

data
 

group
 

from
 

a
 

single
 

HTs
 

benchmark
 

as
 

testing
 

data
 

( Mode2
 

and
 

Mode3).
 

②
 

Randomly
 

select
 

a
 

portion
 

of
 

data
 

as
 

testing
 

sample
 

(Mode1
 

and
 

Mode4).
3 )

 

Design
 

an
 

effective
 

Standardization
 

to
 

accelerate
 

convergence,
 

and
 

avoid
 

different
 

feature
 

scales
 

dominating
 

the
 

classification.
3. 2. 3　 Training

Get
 

trained
 

models
 

from
 

the
 

selected
 

vectors
 

using
 

ML
 

algorithms.
 

The
 

main
 

steps
 

include:
a)

 

Set
 

initial
 

value
 

for
 

each
 

parameter,
 

and
 

label
 

the
 

normalized
 

power
 

characters
 

for
 

training
 

as
 

genuine
 

and
 

Trojan-inserted
 

(if
 

necessary).
b )

 

Apply
 

the
 

selected
 

Mode
 

into
 

the
 

ML
 

algorithms
 

and
 

train
 

the
 

learning
 

model
 

separately.
3. 2. 4　 Testing

Evaluate
 

and
 

optimize
 

the
 

trained
 

model
 

using
 

test
 

data
 

with
 

labels.
 

The
 

main
 

steps
 

include:
1)

 

Input
 

test
 

data
 

into
 

the
 

trained
 

model,
 

calculate
 

mathematical
 

results
 

and
 

produce
 

the
 

margin
 

between
 

two
 

classes.
2)

 

Classify
 

the
 

test
 

data
 

based
 

on
 

the
 

above
 

margin
 

in
 

each
 

algorithm.
3)

 

Run
 

m
 

iterations
 

in
 

each
 

sampling
 

case
 

as
 

cross
 

validation.
 

Compare
 

the
 

classification
 

results
 

with
 

known
 

labels.
 

Count
 

the
 

true
 

negative
 

and
 

true
 

positive
 

and
 

calculate
 

the
 

accuracy.
 

If
 

the
 

result
 

exceeds
 

the
 

pre-defined
 

rate,
 

the
 

model
 

will
 

optimize
 

realtive
 

parameters
 

and
 

restart
 

another
 

iteration.
3. 2. 5　 Making

 

decision
This

 

stage
 

is
 

to
 

calculate
 

the
 

overall
 

performance,
 

and
 

provide
 

the
 

final
 

label
 

for
 

each
 

design
 

under
 

test.
 

The
 

main
 

steps
 

include:
1)

 

Rank
 

the
 

algorithms
 

by
 

accuracy
 

and
 

sensitivities
 

to
 

feature
 

conditions.
2)

 

Output
 

the
 

final
 

evaluating
 

decision
 

(Trojan-
insert

 

or
 

not)
 

for
 

each
 

design
 

under
 

test.

4　 Experimental
 

results
 

and
 

analysis
　 　 In

 

order
 

to
 

evaluate
 

the
 

proposed
 

method,
 

we
 

used
 

the
 

EDA-CAS
 

SOC / IP
 

Evaluation
 

Prototype
 

Board
 

v2. 0
 

to
 

do
 

experiments.
 

The
 

FPGA
 

device
 

on
 

the
 

board
 

is
 

Altera
 

Stratix Ⅱ
 

EP2S130F150814
 

fabricated
 

in
 

90 nm
 

CMOS
 

technology.
 

The
 

genuine
 

and
 

HTs
 

benchmark
 

circuits
 

of
 

MC8051
 

micro-
controller

 

were
 

implemented
 

on
 

the
 

platform
 

via
 

Quartus
 

Ⅱ
 

version
 

11. 0,
 

separately.
 

The
 

input
 

synchronized
 

clock
 

is
 

22. 42 MHz
 

and
 

the
 

test
 

vectors
 

are
 

the
 

same
 

for
 

all
 

test
 

cases.
 

The
 

power
 

characters
 

were
 

extracted
 

by
 

using
 

the
 

power
 

analyzing
 

tool
 

PowerPlay
 

in
 

post-gate-level
 

simulation.
 

We
 

did
 

not
 

trigger
 

any
 

HTs
 

in
 

all
 

test
 

cases. Table
 

2
 

shows
 

the
 

number
 

of
 

observations
 

in
 

training
 

and
 

test
 

data
 

set
 

in
 

in
 

all
 

test
 

modes.
 

Table
 

2　 Number
 

of
 

observations
 

in
 

each
 

learning
 

case
k-NN,

 

Bayes,
A-DT

SVM-2C SVM-1C

train test train test train test

Mode1

0. 1 44 　 4 29 　 3 21 11
0. 2 39 9 26 6 19 13
0. 3 34 14 23 9 16 16
0. 4 29 19 20 12 14 18

Mode2 725 145 435 145 290 145
Mode3 40 8 24 8 16 8

Mode4

0. 1 783 87 522 58 391 189
0. 2 696 174 464 116 348 232
0. 3 609 261 406 174 304 276
0. 4 522 348 348 232 261 319

　 　 We
 

used
 

different
 

sampling
 

ratios
 

in
 

Mode1
 

and
 

Mode4
 

( from
 

0. 1
 

to
 

0. 4 )
 

to
 

investigate
 

the
 

performance
 

versus
 

data
 

amount.
 

Moreover,
 

in
 

order
 

to
 

decline
 

the
 

possibility
 

of
 

most
 

training
 

data
 

could
 

come
 

from
 

one
 

same
 

class
 

due
 

to
 

small
 

data
 

amount
 

in
 

Mode1
 

and
 

Mode3,
 

only
 

those
 

successful
 

running
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results
 

account
 

for
 

the
 

accuracy.
The

 

classification
 

results
 

of
 

Mode1
 

are
 

shown
 

in
 

Fig. 3
 

(a)-3( e).
 

Each
 

radar
 

figure
 

represents
 

the
 

ML
 

algorithm ’ s
 

detection
 

accuracy
 

of
 

relative
 

instructions,
 

which
 

also
 

can
 

be
 

seen
 

as
 

the
 

different
 

effects
 

of
 

feature
 

1
 

( instruction
 

type
 

difference).
 

The
 

accuracy
 

is
 

calculated
 

as
 

number
 

of
 

correctly
 

labeled
 

observations
 

in
 

total
 

labeled
 

observations.
 

All
 

the
 

supervised
 

learning
 

algorithms
 

get
 

satisfied
 

performances,
 

but
 

the
 

unsupervised
 

method
 

only
 

correctly
 

detects
 

different
 

instructions
 

range
 

from
 

28%
 

to
 

72% .

Fig. 3　 Detection
 

accuracy
 

of
 

different
 

instructions
 

in
 

Mode1

　 　 Figure
 

4
 

shows
 

the
 

detection
 

accuracy
 

in
 

relative
 

HTs
 

of
 

Mode2.
 

In
 

the
 

results
 

of
 

HT2-HT5,
 

we
 

obtained
 

100%
 

accuracy
 

in
 

all
 

supervised
 

algorithms.
 

However,
 

we
 

almost
 

failed
 

in
 

HT1
 

test
 

except
 

for
 

Bayes
 

method.
 

This
 

is
 

because
 

the
 

offset
 

between
 

HT1
 

and
 

the
 

genuine
 

chip
 

is
 

very
 

small,
 

which
 

is
 

hard
 

to
 

separate
 

by
 

most
 

classifiers.
 

Since
 

Bayes
 

uses
 

probability
 

instead
 

of
 

distance
 

or
 

boundary
 

to
 

do
 

calculation,
 

it
 

presents
 

the
 

best
 

performance
 

in
 

this
 

mode.
 

The
 

unsupervised
 

SVM-
1C

 

can
 

only
 

detect
 

HT3
 

correctly
 

because
 

it
 

is
 

the
 

largest
 

Trojan
 

circuit.
 

Fig. 4　 Detection
 

accuracy
 

of
 

different
 

HTs
 

in
 

Mode2

　 　 In
 

instruction
 

&
 

HTs-sensitive
 

mode
 

(Mode3),
 

the
 

combination
 

effect
 

of
 

both
 

instruction
 

and
 

HTs
 

quantifies
 

the
 

mix
 

sensitivity.
 

We
 

summary
 

the
 

test
 

average
 

accuracy,
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instruction
 

sensitivity
 

( Instr-Sens),
 

HTs
 

sensitivity
 

( HTs-Sens ),
 

and
 

mix
 

sensitivity
 

of
 

both
 

two
 

features
 

(Mix-Sens)
 

for
 

Mod
 

1
 

to
 

Mod
 

3
 

in
 

Table
 

3.
 

From
 

the
 

results,
 

we
 

have
 

the
 

following
 

learnings.

Table
 

3　 Average
 

accuracy
 

and
 

feature
 

sensitivity
 

result
 

for
 

Mode1-3

ML
 

method
Mode1 Mode2 Mode3

accuracy / % Instr-Sens accuracy / % HTs-Sens accuracy / % Mix-Sens
k-NN 96. 6 0. 13 80. 0 0. 45 81. 0 0. 43
Bayes 96. 9 0. 05 97. 1 0. 06 100. 0 0
AdaBoost-DT 81. 4 0. 18 81. 1 0. 42 80. 0 0. 44
SVM-2C 89. 4 0. 11 80. 0 0. 45 80. 0 0. 45
SVM-1C 45. 5 0. 20 21. 1 0. 44 31. 0 0. 61

　 　 1)
 

Bayes
 

is
 

the
 

least
 

interfered
 

method
 

by
 

both
 

features
 

and
 

gets
 

the
 

highest
 

accuracy
 

in
 

all
 

Modes.
 

Therefore,
 

the
 

Bayes
 

methods
 

can
 

be
 

considered
 

as
 

a
 

premium
 

choice
 

when
 

there
 

is
 

few
 

knowledge
 

about
 

any
 

features.
2)

 

Other
 

supervised
 

methods,
 

including
 

k-NN,
 

AdaBoost-DT
 

and
 

SVM-2C,
 

are
 

more
 

sensitive
 

to
 

HTs
 

types
 

rather
 

than
 

instructions.
 

SVM-1C
 

performs
 

nearly
 

equal
 

to
 

the
 

two
 

features.
None-sensitive

 

( Mode4 )
 

can
 

be
 

seen
 

as
 

a
 

rough
 

learning
 

mode,
 

the
 

accuracy
 

in
 

different
 

test
 

sampling
 

ratios
 

is
 

showed
 

in
 

Table
 

4.
 

In
 

Mode4,
 

since
 

the
 

training
 

and
 

test
 

sets
 

are
 

determined
 

by
 

a
 

random
 

vector,
 

the
 

classification
 

and
 

accuracy
 

results
 

are
 

averaged
 

by
 

five
 

running
 

trails.

Table
 

4　 Detection
 

accuracy
 

in
 

Mode4 %

test
 

sampling
 

ratio
0. 1 0. 2 0. 3 0. 4 average

k-NN 96. 6 95. 9 96. 4 96. 4 96. 3
Bayes 95. 2 96. 0 95. 1 95. 1 95. 4
AdaBoost-DT 81. 6 82. 5 82. 9 82. 9 82. 5
SVM-2C 97. 9 98. 4 97. 6 97. 6 97. 9
SVM-1C 19. 5 17. 2 53. 2 19. 8 27. 4

　 　 In
 

order
 

to
 

compare
 

the
 

performances
 

with
 

reference[23] ,
 

we
 

infer
 

they
 

performed
 

a
 

coarse
 

sampling
 

process,
 

which
 

is
 

similar
 

with
 

our
 

Mode4.
 

They
 

had
 

accuracy
 

results
 

of
 

99. 02%
 

for
 

k-NN
 

and
 

86. 46%
 

for
 

Bayes,
 

respectively,
 

while
 

both
 

results
 

in
 

our
 

experiment
 

are
 

no
 

less
 

than
 

95. 0% .
According

 

to
 

the
 

result,
 

SVM-2C
 

performs
 

the
 

best
 

in
 

Mode4.
 

Because
 

under
 

one
 

instruction,
 

different
 

power
 

characters
 

produced
 

by
 

different
 

Trojan
 

circuits
 

are
 

more
 

linearly
 

separable,
 

which
 

is
 

the
 

favor
 

condition
 

of
 

SVM.

The
 

computing
 

environment
 

is
 

Intel
 

i5-2400
 

CPU
 

with
 

3. 10 GHz
 

main
 

frequency.
 

The
 

formalized
 

time
 

consuming
 

in
 

all
 

tests
 

and
 

modes
 

are
 

shown
 

in
 

Table
 

5.
 

Based
 

on
 

the
 

results,
 

SVM-2C
 

consumes
 

the
 

shortest
 

time
 

to
 

finish
 

the
 

computation,
 

which
 

makes
 

it
 

a
 

competitive
 

option
 

for
 

further
 

hardware
 

implementations.

Table
 

5　 Computing
 

time
 

in
 

all
 

modes s

Mode1 Mode2 Mode3 Mode4 average

k-NN 0. 128 5 0. 277 3 0. 148 9 0. 213 0 0. 191 9

Bayes 0. 121 6 0. 016 8 0. 137 3 0. 011 0 0. 071 7

Ada-Boost 0. 584 1 0. 102 5 0. 620 6 0. 084 5 0. 347 9

SVM-2C 0. 090 6 0. 008 9 0. 05 0. 012 2 0. 040 4

SVM-1C 0. 130 7 0. 070 9 0. 115 5 0. 090 7 0. 102 0

　 　 From
 

all
 

of
 

the
 

test
 

results,
 

we
 

can
 

summarize:
1)

 

The
 

power
 

character
 

of
 

a
 

Trojan-insert
 

chip
 

which
 

is
 

close
 

to
 

genuine
 

one
 

rather
 

than
 

other
 

HTs
 

cannot
 

be
 

efficiently
 

detected
 

in
 

k-NN,
 

AdaBoost-
DT

 

and
 

SVM
 

(like
 

HT1
 

in
 

test) .
2)

 

The
 

affections
 

of
 

HTs
 

are
 

usually
 

bigger
 

than
 

instructions
 

to
 

all
 

ML
 

methods,
 

and
 

Bayes
 

is
 

proved
 

to
 

be
 

the
 

prospective
 

algorithm
 

in
 

term
 

of
 

accuracy
 

in
 

both
 

instructions
 

and
 

HTs
 

changing
 

situations.
3)

 

Since
 

SVM
 

gets
 

comparable
 

performance
 

and
 

consumes
 

the
 

shortest
 

time
 

to
 

finish
 

the
 

learning
 

loop
 

in
 

average,
 

it
 

can
 

be
 

considered
 

as
 

an
 

efficient
 

hardware
 

model
 

to
 

insert
 

in
 

chips.
4)

 

For
 

one-class
 

SVM,
 

the
 

detection
 

accuracy
 

results
 

in
 

all
 

test
 

modes
 

are
 

much
 

lower
 

than
 

supervised
 

ones
 

due
 

to
 

the
 

influence
 

of
 

uncertain
 

decision
 

boundary
 

from
 

unknown
 

mixed
 

classesin
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both
 

train
 

and
 

test
 

phase.
 

However,
 

we
 

constructed
 

an
 

Harsh
 

learning
 

condition
 

in
 

the
 

experiment
 

because
 

the
 

overall
 

percentage
 

of
 

genuine
 

data
 

is
 

only
 

16. 7% ,
 

which
 

is
 

almost
 

impossible
 

in
 

practice.
 

But
 

it
 

can
 

still
 

detect
 

some
 

HTs
 

without
 

golden
 

reference,
 

which
 

also
 

makes
 

it
 

a
 

competitive
 

alternative
 

in
 

application.
 

5　 Conclusion
　 　 Detection

 

of
 

stealthy
 

Hardware
 

Trojans
 

violating
 

runtime
 

operations
 

is
 

significantly
 

challenging.
 

In
 

this
 

paper,
 

we
 

propose
 

a
 

ML
 

involved
 

framework
 

to
 

classify
 

the
 

genuine
 

and
 

Trojan-insert
 

circuit
 

using
 

characterized
 

side-channel
 

power
 

in
 

instruction-
level.

 

Various
 

features
 

including
 

instruction
 

and
 

Trojan
 

types
 

are
 

well-extracted
 

to
 

construct
 

exclusive
 

feature
 

sets.
 

Experimental
 

results
 

on
 

Altera
 

FPGA
 

represented
 

that
 

distinct
 

ML
 

methods
 

have
 

different
 

sensitivities
 

to
 

the
 

features,
 

which
 

can
 

greatly
 

fluctuate
 

the
 

accuracy.
 

Naïve
 

Bayes
 

reached
 

the
 

best
 

average
 

accuracy,
 

and
 

the
 

SVM-2C
 

consumed
 

the
 

shortest
 

CPU
 

running
 

time.
 

We
 

also
 

proved
 

that
 

the
 

unsupervised
 

one-class
 

SVM
 

can
 

detect
 

HTs
 

without
 

golden
 

reference
 

in
 

the
 

range
 

of
 

17%
 

to
 

72%
 

even
 

in
 

Harsh
 

condition.
In

 

the
 

future,
 

the
 

optimized
 

classification
 

ML
 

methods
 

can
 

be
 

inserted
 

into
 

chips
 

after
 

getting
 

well-
trained

 

to
 

predict
 

unknown
 

HTs
 

in
 

order
 

to
 

accomplish
 

real
 

runtime
 

detection.
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