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Abstract　 The
 

quantum
 

kicked
 

rotor
 

( QKR)
 

model
 

is
 

a
 

prototypical
 

system
 

in
 

the
 

research
 

of
 

quantum
 

chaos.
 

In
 

a
 

spin-1 / 2
 

QKR,
 

tuning
 

the
 

effective
 

Planck
 

parameter
 

realizes
 

a
 

series
 

of
 

transitions
 

between
 

dynamical
 

localization
 

phases,
 

which
 

closely
 

resembles
 

the
 

integer
 

quantum
 

Hall
 

(IQH)
 

effect
 

and
 

the
 

plateau
 

transitions.
 

In
 

this
 

work,
 

we
 

devise
 

and
 

apply
 

the
 

finite-size
 

scaling
 

analysis
 

to
 

the
 

transitions
 

in
 

the
 

spin-1 / 2
 

QKR
 

model.
 

We
 

obtain
 

an
 

estimate
 

of
 

the
 

critical
 

exponent
 

at
 

the
 

transition
 

point,
 

ν = 2. 62(9),
 

which
 

is
 

consistent
 

with
 

the
 

IQH
 

plateau
 

transition
 

universality
 

class.
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自旋 1 / 2 量子受激转子中 Planck 常数调节的
整数量子霍尔效应转变的有限尺寸标度分析

张嘉龙,张龙,张富春

(中国科学院大学
 

卡弗里理论科学研究所 / 中国科学院拓扑量子计算卓越创新中心,
 

北京
 

100190)

摘　 要　 量子受激转子(quantum
 

kicked
 

rotor,QKR)是量子混沌研究中的重要模型之一。 在

自旋 1 / 2 的 QKR 中,调节等效 Planck 常数可以在动力学局域化相之间实现一系列相变,其形

式与整数量子霍尔效应及其平台相变相似。 研究这一相变的有限尺寸标度理论,并将其应用
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于自旋 1 / 2 的 QKR 模型。 估计出相变的临界指数为 ν = 2. 62(9), 符合整数量子霍尔效应平

台转变的普适类。
 

关键词　 量子受激转子;整数量子霍尔效应;临界现象;有限尺寸标度

　 　 The
 

kicked
 

rotor
 

model
 

describes
 

a
 

particle
 

moving
 

on
 

a
 

circle
 

and
 

is
 

kicked
 

periodically
 

by
 

a
 

space-dependent
 

potential
 

term.
 

It
 

is
 

a
 

prototypical
 

model
 

in
 

the
 

research
 

of
 

both
 

classical
 

and
 

quantum
 

chaos[1-3] .
 

For
 

a
 

sufficiently
 

large
 

kicking
 

strength,
 

the
 

energy
 

of
 

a
 

classical
 

kicked
 

rotor
 

grows
 

linearly
 

with
 

time,
 

E( t) ∝ t,
 

as
 

a
 

result
 

of
 

the
 

Brownian
 

motion
 

in
 

the
 

momentum
 

space.
 

However,
 

such
 

linear
 

diffusive
 

motion
 

is
 

suppressed
 

in
 

the
 

long-time
 

limit
 

for
 

a
 

quantum
 

kicked
 

rotor
 

( QKR)
 

due
 

to
 

the
 

destructive
 

quantum
 

interference,
 

leading
 

to
 

a
 

dynamical
 

localization
 

in
 

the
 

momentum
 

space[4] .
 

The
 

kicked
 

rotor
 

model
 

has
 

been
 

generalized
 

to
 

higher
 

dimensions
 

and
 

spinful
 

particles[5-12] .
A

 

particular
 

interesting
 

discovery
 

is
 

the
 

Planck’s
 

quantum-driven
 

integer
 

quantum
 

Hall
 

(IQH)
 

effect
 

in
 

a
 

spin-1 / 2
 

QKR
 

model[13-14] ,
 

which
 

establishes
 

a
 

surprising
 

bridge
 

between
 

chaotic
 

systems
 

characterized
 

by
 

the
 

sensitivity
 

to
 

initial
 

conditions,
 

and
 

the
 

topologically
 

robust
 

IQH
 

effect
 

with
 

a
 

quantized
 

Chern
 

number.
 

It
 

is
 

analytically
 

shown
 

that,
 

by
 

tuning
 

the
 

effective
 

Planck’ s
 

quantum
 

he,
 

the
 

model
 

defined
 

in
 

Eq.
 

( 2)
 

exhibits
 

an
 

infinite
 

number
 

of
 

“ Hall
 

plateau”
 

transitions
 

between
 

the
 

dynamically
 

localized
 

insulating
 

phases.
 

Each
 

insulating
 

phase
 

is
 

characterized
 

by
 

an
 

integer
 

σH

  analogous
 

to
 

the
 

quantized
 

Hall
 

conductance
 

of
 

IQH
 

plateaus.
 

The
 

critical
 

metallic
 

states
 

at
 

the
 

transition
 

points
 

are
 

predicted
 

to
 

possess
 

a
 

universal
 

“ longitudinal
 

conductance”
 

σ∗ = limt→∞ E ( t) / t,
 

and
 

belong
 

to
 

the
 

universality
 

class
 

of
 

the
 

IQH
 

plateau
 

transitions.
 

The
 

emergence
 

of
 

these
 

transitions
 

has
 

been
 

observed
 

in
 

numerical
 

simulations[13-14] .
 

However,
 

precise
 

calculations
 

of
 

the
 

critical
 

exponents
 

at
 

the
 

“plateau
 

transitions”
 

have
 

not
 

been
 

achieved,
 

thus
 

leaving
 

the
 

universality
 

class
 

of
 

the
 

transitions
 

not
 

fully
 

confirmed.
In

 

this
 

work,
 

we
 

apply
 

the
 

finite-size
 

scaling
 

analysis
 

to
 

the
 

plateau
 

transitions
 

in
 

the
 

spin-1 / 2
 

QKR
 

model.
 

With
 

extensive
 

numerical
 

simulations
 

near
 

the
 

critical
 

point
 

and
 

finite-size
 

scaling
 

analysis,
 

we
 

obtain
 

an
 

estimate
 

of
 

the
 

critical
 

exponent
 

at
 

the
 

critical
 

point
 

ν = 2. 62(9),
 

which
 

is
 

consistent
 

with
 

the
 

IQH
 

plateau
 

transition
 

universality
 

class.

1　 The
 

model
　 　 We

 

shall
 

study
 

the
 

spin-1/ 2
 

QKR
 

model
 

introduced
 

in
 

Ref.
 

[15].
 

A
 

spin-1 / 2
 

particle
 

moves
 

on
 

a
 

circle
 

of
 

unit
 

radius
 

and
 

is
 

kicked
 

periodically
 

by
 

a
 

potential
 

field,
 

whose
 

strength
 

depends
 

on
 

the
 

position
 

the
 

particle.
 

Denote
 

the
 

two-component
 

spinor
 

wavefunction
 

by
 

Ψt .
 

Its
 

dynamics
 

is
 

governed
 

by
 

the
 

time-dependent
 

Schrodinger
 

equation,
ihe∂tΨt = H( t)Ψt, (1)

in
 

which
 

the
 

Hamiltonian
 

is
 

given
 

by

H( t) = H0(p1,p2) + V(θ1,θ2)∑ s∈Z
δ( t - s),

(2)
where

 

θ1 (modulo
 

2π)
 

is
 

the
 

angular
 

position
 

of
 

the
 

particle,
 

and
 

p1 = ihe∂θ1
 is

 

the
 

conjugate
 

momentum
 

operator.
 

While
 

the
 

model
 

is
 

defined
 

in
 

two
 

space
 

dimensions,
 

we
 

shall
 

show
 

in
 

Sec.
 

2. 3
 

that
 

it
 

can
 

be
 

simulated
 

effectively
 

in
 

1D
 

with
 

the
 

technique
 

of
 

dimension
 

reduction.
 

The
 

canonical
 

commutation
 

relation
 

is
 

given
 

by
 

[θi,
 

pj] = iheδij .
 

The
 

effective
 

Planck’ s
 

constant
 

he
 is

 

a
 

tuning
 

parameter
 

in
 

the
 

model.
The

 

generic
 

form
 

of
 

the
 

potential
 

energy
 

term
 

is
 

given
 

by
 

V = Vi(θ1,θ2)σi,
 

where
 

σi
 

( i = 1,
 

2,
 

3)
 

are
 

the
 

Pauli
 

matrices.
 

The
 

Einstein
 

summation
 

convention
 

is
 

used.
 

The
 

potential
 

energy
 

term
 

couples
 

the
 

spin
 

and
 

the
 

angular
 

position
 

of
 

the
 

particle,
V(θ1,θ2) = (2arctan(2d) / d)d·σ, (3)

with
 

the
 

vector
 

d
 

given
 

by
d = (sinθ1,sinθ2,0. 8(μ - cosθ1 - cosθ2)) .

(4)
This

 

potential
 

term
 

of
 

the
 

spin-1 / 2
 

QKR
 

model
 

was
 

first
 

introduced
 

in
 

Ref.
 

[ 15],
 

which
 

was
 

inspired
 

by
 

the
 

Qi-Wu-Zhang
 

model
 

of
 

quantum
 

anomalous
 

Hall
 

effect[16] .
 

A
 

series
 

of
 

phase
 

transitions
 

driven
 

by
 

the
 

effective
 

Planck
 

parameter
 

he
 was

 

found
 

in
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……

Refs.
 

[ 13-14],
 

which
 

resembles
 

the
 

IQH
 

plateau
 

transitions
 

in
 

various
 

significant
 

aspects.
In

 

this
 

work,
 

we
 

shall
 

focus
 

on
 

the
 

latter
 

case
 

and
 

fix
 

μ = 1
 

in
 

the
 

rest
 

of
 

this
 

work.
1. 1　 Floquet

 

operator
　 　 The

 

nature
 

of
 

the
 

long-time
 

dynamics
 

of
 

the
 

QKR
 

can
 

be
 

obtained
 

by
 

inspecting
 

the
 

time-
evolving

 

state
 

at
 

integer
 

time
 

t.
 

Given
 

an
 

initial
 

state
 

Ψ0〉
 

at
 

t0 = 0,
 

the
 

state
 

at
 

time
 

t
 

can
 

be
 

obtained
 

by
 

applying
 

the
 

Floquet
 

operator
 

t
 

times
 

on
 

Ψt〉 =
t Ψ0〉,

 

in
 

which
 

the
 

Floquet
 

operator
  

is
 

the
 

time-evolution
 

operator
 

in
 

one
 

kicking
 

period,

= e - iV(θ) / hee -iH0(p) / he . (5)
In

 

the
 

angular
 

position
 

representation,
 

p = - ihe∂θ .
 

The
 

Hamiltonian
 

in
 

Eq.
 

(2)
 

is
 

2π-periodic
 

in
 

θ,
 

thus
 

the
 

eigenstates
 

of
 

the
 

Floquet
 

operator
  

can
 

be
 

decomposed
 

in
 

the
 

following
 

form
 

due
 

to
 

the
 

Floquet-
Bloch

 

theorem,
Ψq(θ) = eiq·θu(θ), (6)

where
 

q = (q1,q2)
 

with
 

the
 

constants
 

q1,2 ∈ (0,1),
 

and
 

u(θ)
 

is
 

a
 

2π-periodic
 

function
 

of
 

the
 

angle
 

variables
 

θ.
 

Therefore,
 

for
 

these
 

eigenstates,
 

H0( -
ihe∂θ)

 

can
 

be
 

replaced
 

by
 

H0( - ihe∂θ + heq)
 

acting
 

on
 

u(θ) .
 

The
 

corresponding
 

Floquet
 

operator
 

reads

= e - iV(θ) / hee - iH0( - ihe∂θ+heq) / he . (7)
1. 2　 Mapping

 

to
 

the
 

Anderson
 

model
　 　 The

 

QKR
 

model
 

can
 

be
 

mapped
 

to
 

the
 

Anderson
 

model
 

of
 

a
 

particle
 

moving
 

in
 

a
 

quasi-
disordered

 

system,
 

signifying
 

the
 

link
 

between
 

quantum
 

chaos
 

and
 

Anderson
 

localization[4,17] .
 

Let
 

us
 

first
 

omit
 

the
 

spin
 

degree
 

of
 

freedom
 

and
 

define
 

the
 

eigenstate
 

of
 

the
 

Floquet
 

operator
 

by
a + 〉 = e - i a + 〉, (8)

in
 

which
 

ε
 

is
 

called
 

the
 

quasi-energy.
 

Here
 

a + 〉
 

is
 

the
 

eigenstate
 

of
 

the
 

Floquet
 

operator
 

immediately
 

after
 

the
 

kick.
 

Define

a - 〉 = eiV a + 〉 = ei􀆠- iH0 a + 〉, (9)
which

 

is
 

the
 

eigenstate
 

before
 

the
 

kick,
 

then
 

a ±〉
 

satisfy

a + 〉 = e - iV a - 〉≡ 1 - iW
1 + iW

a - 〉 . (10)

Define
 

u〉 = 1
2

( a + 〉 + a - 〉),
 

then
 

we
 

have

a + 〉 = (1 - iW) u〉, (11)
a - 〉 = (1 + iW) u〉 . (12)

Substituting
 

into
 

Eq.
 

(9),
 

we
 

find
 

u〉
 

satisfies
 

the
 

following
 

secular
 

equation,

W u〉 = tan
- H0

2( ) u〉 . (13)

In
 

the
 

momentum
 

space
 

with
 

a
 

basis
 

{ n〉 },
 

where
 

p n〉 = hen n〉,
 

and
 

with
 

the
 

spin
 

indices
 

recovered,
 

we
 

arrived
 

at

∑ ns′
Wss′

n us′
n+m + tan

H0(m) -
2( ) us

m = 0,

(14)
where

 

Wss′
n-m = 〈m,s |W | n,s′〉,

 

and
 

us
m = 〈m,s | u,s〉.

 

This
 

is
 

an
 

Anderson
 

model
 

in
 

two
 

dimensions,
 

in
 

which
 

the
 

kinetic
 

term
 

H0(m)
 

in
 

the
 

QKR
 

model
 

plays
 

the
 

role
 

of
 

a
 

quasi-disordered
 

potential.
 

From
 

Eq.
 

(10),
 

the
 

hopping
 

matrix
 

W
 

in
 

the
 

Anderson
 

model
 

is
 

given
 

by

W = i 1 - eiV

1 + eiV
= tan(V / 2) . (15)

W
 

is
 

diagonal
 

in
 

the
 

angular
 

position
 

representation.
 

Given
 

the
 

form
 

of
 

V
 

in
 

Eq.
 

(3),
 

we
 

find
W = 2d·σ. (16)

1. 3　 Dimension
 

reduction
　 　 The

 

2 D
 

QKR
 

model
 

can
 

be
 

effectively
 

reduced
 

to
 

1D
 

by
 

choosing
 

an
 

incommensurate
 

driving
 

frequency
 

in
 

the
 

second
 

dimension[5-6,18] .
 

Consider
 

the
 

following
 

separable
 

kinetic
 

energy
 

term,
H0(p1,p2) = H0(p1) + ωp2, (17)

treat
 

the
 

second
 

term
 

as
 

a
 

“ non-interacting ”
 

Hamiltonian,
 

0 = ωp2,
 

and
 

the
 

rest
 

part
 

as
 

the
 

“interactions”,
 

int = H0(p1) + V(θ)∑ s∈Z
δ( t -

s),
 

and
 

then
 

transform
 

into
 

the
 

interaction
 

picture,

ΨI = ei 0t / heΨ = eiωp2t / he, (18)
and

 

the
 

transformed
 

Hamiltonian
 

is
 

given
 

by

HI = ei 0t / he
inte

- i 0t / he =

H0(p1) + V(θ1,θ2 + ωt)∑ s∈Z
δ( t - s),

(19)

where
 

the
 

translation
 

relation
 

eiωp2t / heV(θ 2)e - iωp2t / he =
V(θ 2 + ωt)

  

is
 

used.
 

The
 

Schrodinger
 

equation
 

in
 

the
 

interaction
 

picture
 

reads
ihe∂tΨI = HIΨI, (20)

365
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in
 

which
 

the
 

Hamiltonian
 

is
 

given
 

by

HI = H0(p1) + V(θ1,θ2 + ωt)∑ s∈Z
δ( t - s) .

(21)
This

 

is
 

a
 

1D
 

model,
 

which
 

dramatically
 

simplifies
 

the
 

following
 

numerical
 

calculations.
 

The
 

corresponding
 

Floquet
 

operator
 

is
 

given
 

by

q = e - iV(θ1,ωt+α) / hee - iH0(n1+q) / he, (22)
where

 

n1 = p1 / he .
 

In
 

the
 

following
 

numerical
 

simulations,
 

we
 

adopt
 

the
 

kinetic
 

term
H0(p1) = p2

1, (23)

and
 

ω = 2π
5

,
 

which
 

is
 

incommensurate
 

with
 

the
 

driving
 

frequency
 

in
 

first
 

dimension.
 

This
 

guarantees
 

that
 

the
 

disorder
 

potential
 

produced
 

by
 

the
 

kinetic
 

term
 

H0(p1,p2)
  

is
 

sufficiently
 

quasi-random
 

to
 

induce
 

dynamical
 

localization
 

in
 

the
 

equivalent
 

Anderson
 

model.

2　 Numerical
 

simulations
　 　 We

 

work
 

in
 

the
 

momentum
 

representation
 

in
 

numerical
 

simulations.
 

The
 

Hilbert
 

space
 

is
 

truncated
 

to
 

be
 

2N-dimensional
 

such
 

that
 

the
 

momentum
 

index
 

n ∈ [ - N,N - 1] .
 

Two
 

types
 

of
 

initial
 

states
 

are
 

considered
 

in
 

our
 

simulations.
 

The
 

first
 

one
 

is
 

of
 

the
 

δ-function
 

form,

Ψ0(n) = 〈n | Ψ0〉 = δn,0

e - iφ / 2cos(ϕ / 2)
eiφ / 2sin(ϕ / 2)( ) ,

(24)
while

 

the
 

second
 

is
 

a
 

Gaussian
 

wave-packet
 

given
 

by

Ψ0(n) ∝ e
-

( -n0) 2

2σ2 e - iφn / 2cos(ϕn / 2)

eiφn / 2sin(ϕn / 2)( ) (25)

up
 

to
 

a
 

normalization
 

factor.
 

We
 

choose
 

n0 = 0
 

and
 

several
 

different
 

σ
 

in
 

our
 

simulations
 

and
 

find
 

that
 

the
 

diffusion
 

rates
 

defined
 

below
 

in
 

the
 

late-time
 

dynamics
 

are
 

not
 

sensitive
 

to
 

the
 

choice
 

of
 

initial
 

states.
 

Below
 

we
 

show
 

results
 

obtained
 

with
 

the
 

initial
 

states
 

of
 

the
 

δ-function.
 

The
 

diffusion
 

rate
 

is
 

defined
 

by

D( t) = Δ2( t)
t

, (26)

where
 

Δ2( t) = 1
2

〈Ψt | n2 | Ψt〉,
 

and
 

the
 

rotor
 

energy
 

E( t) = h2
e Δ2( t) .

 

〈…〉
 

is
 

the
 

ensemble
 

average
 

over
 

uniformly
 

distributed
 

α ∈ [0,2π)
 

and
 

q ∈ [0, 1),
 

and
 

the
 

angle
 

variables
 

of
 

the
 

initial
 

state
 

ϕ
 

and
 

φ
 

( or
 

ϕn
 and

 

φn )
 

uniformly
 

distributed
 

on
 

the
 

Bloch
 

sphere.
 

We
 

find
 

that
 

both
 

types
 

of
 

initial
 

states
 

give
 

rise
 

to
 

the
 

almost
 

same
 

diffusion
 

rate
 

after
 

the
 

ensemble
 

average.
The

 

long-time
 

diffusion
 

rate
 

D( t)
 

as
 

a
 

function
 

of
 

Planck’s
 

parameter
 

he
 for

 

0 ≤ h -1
e ≤4. 5

 

is
 

plotted
 

in
 

Fig. 1.
 

The
 

QKR
 

exhibits
 

dynamical
 

localization
 

with
 

D( t) → 0
 

as
 

t → ∞
 

for
 

a
 

generic
 

he,
 

but
 

undergoes
 

transitions
 

with
 

nonzero
 

diffusion
 

rate
 

near
 

h -1
e = 0. 77,

 

2. 13,
 

and
 

3. 45.

We
 

take
 

ensemble
 

average
 

over
 

400
 

different
 

values
 

of
 

α ∈ (0,2π)
 

and
 

q ∈ (0,1) .
 

We
 

set
 

t = N2 / 4 .
 

The
 

transitions
 

occur
 

near
 

h -1
e = 0. 77,2. 13,

 

and
 

3. 45
 

as
 

indicated
 

with
 

red
 

dashed
 

lines.
 

The
 

diffusion
 

rates
 

converge
 

to
 

a
 

universal
 

value
 

σ∗ ≃ 0. 33
 

(gray
 

dashed
 

line)
 

at
 

these
 

critical
 

points.

Fig. 1　 Long
 

time
 

diffusion
 

rate
 

of
 

the
 

QKR
 

model
 

as
 

a
 

function
 

of
 

h-1
e

 for
 

N=27
 

(blue
 

line)
 

and
 

N=210
 

(black
 

line)

Finite
 

size
 

scaling
 

analysis
We

 

then
 

zoom
 

in
 

and
 

carry
 

out
 

extensive
 

simulations
 

near
 

h-1
e = 0. 77

  

and
 

2. 13
 

for
 

various
 

N
 

and
 

set
 

t = N2 / 4.
 

The
 

results
 

are
 

shown
 

in
 

Fig. 2.
 

We
 

find
 

that
 

the
 

data
 

near
 

h-1
e = 0. 77

  

are
 

not
 

quite
 

smooth
 

even
 

after
 

the
 

ensemble
 

average
 

and
 

show
 

a
 

bunch
 

of
 

peaks
 

and
 

dips,
 

which
 

might
 

be
 

attributed
 

to
 

the
 

semiclassical
 

effect
 

in
 

the
 

early-time
 

dynamics[19-20] .
 

We
 

thus
 

focus
 

on
 

the
 

data
 

near h -1
e = 2. 13.

In
 

the
 

long-time
 

limit,
 

the
 

diffusion
 

rate
 

D( t)
 

goes
 

to
 

zero
 

for
 

an
 

insulating
 

state
 

with
 

dynamical
 

localization
 

in
 

the
 

momentum
 

space,
 

and
 

approaches
 

a
 

nonzero
 

value
 

for
 

a
 

metallic
 

state.
 

According
 

to
 

the
 

scaling
 

theory
 

of
 

Anderson
 

localization,
 

the
 

diffusion
 

465
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Fig. 2　 Long-time
 

diffusion
 

rate
 

of
 

the
 

QKR
 

model
 

as
 

a
 

function
 

of
 

h-1
e

 near
 

the
 

critical
 

point
 

(a)
 

0. 77
 

and
 

(b)
 

2. 13
 

for
 

various
 

N
 

(We
 

set
 

t=N2 / 4)
 

values

rate
 

obeys
 

the
 

one-parameter
 

scaling
 

law.
 

Near
 

the
 

critical
 

point,
 

the
 

diffusion
 

rate
 

has
 

the
 

scaling
 

form,
D(h,t) = ξ2-dF(ξ -d t) . (27)

Here
 

ξ
 

is
 

the
 

localization
 

length,
 

which
 

diverges
 

as
 

ξ ∝| δh | -ν
 

with
 

δh = h -1
e - h -1

e,c . d = 2
 

is
 

the
 

spatial
 

dimension
 

of
 

the
 

equivalent
 

Anderson
 

model.
 

The
 

truncation
 

of
 

the
 

Hilbert
 

space
 

to
 

2N-dimensional
 

introduces
 

a
 

finite
 

lattice
 

size
 

2N
 

in
 

the
 

momentum
 

space,
 

thus
 

the
 

finite-size
 

scaling
 

form
 

is
 

given
 

by
D(h,t,N) = f( t / N2,hN1 / ν) ≡ f(x,y), (28)

with
 

x = t / N2,
 

and
 

y = hN1 / ν . f
 

is
 

a
 

non-singular
 

function
 

of
 

its
 

arguments.
 

In
 

the
 

simulations,
 

we
 

choose
 

t = N2 / 4,
 

thus
 

x = 1 / 4
 

is
 

fixed,
 

and
 

expand
 

f
 

into
 

the
 

power
 

series
 

of
 

y,

f(x0,y) = ∑ kmax

k = 0
akyk . (29)

The
 

expansion
 

coefficients
 

ak ’ s,
 

the
 

critical
 

point
 

h -1
e,c,

 

and
 

the
 

critical
 

exponent
 

ν
 

are
 

free
 

fitting
 

parameters.
Applying

 

the
 

above
 

finite-size
 

scaling
 

analysis,
 

we
 

find
 

all
 

data
 

collapse
 

onto
 

a
 

single
 

smooth
 

curve
 

as
 

a
 

function
 

of
 

δhN1 / ν
 

( see
 

Fig. 3).
 

The
 

critical
 

point
 

h -1
e ,

 

and
 

the
 

critical
 

exponent
 

ν = 2. 62(9),
 

in
 

which
 

the
 

error
 

is
 

the
 

standard
 

error
 

in
 

the
 

fitting
 

procedure.
 

This
 

is
 

consistent
 

with
 

that
 

of
 

the
 

IQH
 

plateau
 

transition
 

estimated
 

with
 

the
 

Chalker-
Coddington

 

model, ν = 2. 593(5) [21-23] ,
 

thus
 

we
 

confirm
 

that
 

the
 

critical
 

point
 

of
 

the
 

spin-1 / 2
 

QKR
 

model
 

belongs
 

to
 

the
 

universality
 

class
 

of
 

the
 

IQH
 

plateau
 

transitions.
 

The
 

critical
 

exponent
 

is
 

analytically
 

estimated
 

in
 

Ref.
 

[ 14]
 

as
 

ν ≃ 2. 75,

 

which
 

is
 

significantly
 

larger
 

than
 

the
 

numerical
 

results.
 

Such
 

a
 

discrepancy
 

might
 

be
 

attributed
 

to
 

the
 

weak-coupling
 

approximation
 

used
 

in
 

the
 

analytical
 

theory.

Fig. 3　 Data
 

collapse
 

of
 

the
 

diffusion
 

rate
 

D( t)
 

in
 

Fig. 2(b)
 

according
 

to
 

finite
 

size
 

scaling
 

form
 

in
 

Eq. (28)

3　 Conclusion
　 　 To

 

summarize,
 

we
 

have
 

studied
 

the
 

spin-1 / 2
 

QKR
 

model
 

with
 

extensive
 

numerical
 

simulations.
 

By
 

devising
 

and
 

applying
 

the
 

finite-size
 

scaling
 

analysis
 

near
 

the
 

critical
 

point
 

between
 

different
 

dynamical
 

localization
 

phases,
 

we
 

obtain
 

the
 

numerical
 

estimate
 

of
 

the
 

critical
 

exponent
 

ν
 

and
 

the
 

universal
 

diffusion
 

rate
 

σ∗
 

at
 

the
 

critical
 

point.
 

We
 

confirm
 

that
 

the
 

transition
 

belongs
 

to
 

the
 

universality
 

class
 

of
 

the
 

IQH
 

plateau
 

transition.
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