[1] 邹才能, 林敏捷, 马锋, 等. 碳中和目标下中国天然气工业进展、挑战及对策[J]. 石油勘探与开发, 2024, 51(2): 418-435. DOI: 10.11698/PED.20230690. [2] 邹才能, 马锋, 潘松圻, 等. 世界能源转型革命与绿色智慧能源体系内涵及路径[J]. 石油勘探与开发, 2023, 50(3): 633-647. DOI: 10.11698/PED.20230029. [3] Evro S, Oni B A, Tomomewo O S.Carbon neutrality and hydrogen energy systems[J]. International Journal of Hydrogen Energy, 2024, 78: 1449-1467. DOI: 10.1016/j.ijhydene.2024.06.407. [4] Mohammed S, Eljack F, Al-Sobhi S, et al.A systematic review: The role of emerging carbon capture and conversion technologies for energy transition to clean hydrogen[J]. Journal of Cleaner Production, 2024, 447: 141506. DOI: 10.1016/j.jclepro.2024.141506. [5] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442. DOI: 10.11698/PED.2019.03.02. [6] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. DOI: 10.3787/j.issn.1000-0976.2021.01.001. [7] Yu K, Ju Y W, Qi Y, et al.Geological process of Late Paleozoic shale gas generation in the eastern Ordos Basin, China: Revelations from geochemistry and basin modeling[J]. International Journal of Coal Geology, 2020, 229: 103569. DOI: 10.1016/j.coal.2020.103569. [8] Deng S, Li S M, Sun S L, et al.Effects of magmatic-hydrothermal activities on characteristic of source rocks from Beipiao formation in the Jinyang basin, NE China[J]. Minerals, 2022, 12(8): 947. DOI: 10.3390/min12080947. [9] Martins C M S, Cerqueira J R, Celino J J, et al. Burial history and thermal maturity of the atypical petroleum system of the Paraná Basin (Irati and Ponta Grossa formations), Brazil[J]. Journal of South American Earth Sciences, 2022, 120: 104087. DOI: 10.1016/j.jsames.2022.104087. [10] Pang Q, Hu G, Sun W, et al.Magmatic thermal influence on the metallic element composition of Xiamaling Formation shale: Implications for oil-source correlation and hydrocarbon potential evaluation[J]. Geoenergy Science and Engineering, 2024, 234: 212605. DOI: 10.1016/j.geoen.2023.212605. [11] Zhang C, Liu D D, Liu Q Y, et al.Magmatism and hydrocarbon accumulation in sedimentary basins: A review[J]. Earth-Science Reviews, 2023, 244: 104531. DOI: 10.1016/j.earscirev.2023.104531. [12] Wang Y, Rong H, Jiao Y Q, et al.Effects of basic intrusions on shale mineralogy: A case study from Nenjiang formation in Songliao basin[J]. Earth Science - Journal of China University of Geosciences, 2021, 46(6). DOI: 10.3799/dqkx.2020.177. [13] Peng H, Wang J Q, Liu C Y, et al.Long-term and multiple stage exhumation of the Ordos Basin, western North China Craton: Insights from seismic reflection, borehole and geochronological data[J]. Earth-Science Reviews, 2023, 238: 104349. DOI: 10.1016/j.earscirev.2023.104349. [14] 琚宜文, 戚宇, 房立志, 等. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799. DOI: 10.11867/j.issn.1001-8166.2016.08.0782. [15] Wu J, Lin Y A, Flament N, et al.Northwest Pacific-Izanagi plate tectonics since Cretaceous times from western Pacific mantle structure[J]. Earth and Planetary Science Letters, 2022, 583: 117445. DOI: 10.1016/j.epsl.2022.117445. [16] Zheng J P, Dai H K.Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton[J]. Science China Earth Sciences, 2018, 61(4): 406-424. DOI: 10.1007/s11430-017-9166-8. [17] Zheng Y F, Xu Z, Zhao Z F, et al.Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere[J]. Science China Earth Sciences, 2018, 61(4): 353-385. DOI: 10.1007/s11430-017-9160-3. [18] 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135-1159. DOI: 10.1007/s11430-012-4516-y. [19] Liu S F, Su S, Zhang G W.Early Mesozoic basin development in North China: Indications of cratonic deformation[J]. Journal of Asian Earth Sciences, 2013, 62: 221-236. DOI: 10.1016/j.jseaes.2012.09.011. [20] Deng T, Ma A L, Chew D, et al.Revisiting the stratigraphical, sedimentological and provenance evolution of Lingshan Island, offshore of East China: Implications for the destruction of the North China Craton[J]. Marine and Petroleum Geology, 2024, 161: 106701. DOI: 10.1016/j.marpetgeo.2024.106701. [21] Ma Q, Zhong Y T, Yin Q Z, et al.High-resolution chronostratigraphy of late Mesozoic sequences in northern North China: Implications for the linkages among intracontinental orogeny, volcanism, Jehol Biota, and Pacific plate subduction[J]. Geology, 2024, 52(1): 45-50. DOI: 10.1130/G51535.1. [22] Zhu R X, Xu Y G.The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9): 1340-1350. DOI: 10.1007/s11430-018-9356-y. [23] Zhu G, Liu C, Gu C C, et al.Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone[J]. Science China Earth Sciences, 2018, 61(4): 386-405. DOI: 10.1007/s11430-017-9136-4. [24] 余川, 汪生秀, 汪威, 等. 大巴山北缘鲁家坪组变质作用及其对页岩气储层的影响[J]. 地质学报, 2020, 94(11): 3461-3470. DOI: 10.19762/j.cnki.dizhixuebao.2020198. [25] Chen S B, Zhu Y M, Li W, et al.Influence of Magma intrusion on gas outburst in a low rank coal mine[J]. International Journal of Mining Science and Technology, 2012, 22(2): 259-266. DOI: 10.1016/j.ijmst.2012.03.004. [26] 武昱东, 琚宜文, 侯泉林, 等. 淮北煤田宿临矿区构造—热演化对煤层气生成的控制[J]. 自然科学进展, 2009, 19(10): 1134-1141. DOI: 10.3321/j.issn:1002-008X.2009.10.017. [27] 谭静强, 琚宜文, 张文永, 等. 淮北煤田中南部大地热流及其煤层气资源效应[J]. 中国科学: 地球科学, 2010, 40(7): 855-865. DOI: 10.3724/SP.J.1011.2010.01081. [28] 张文永, 朱文伟, 窦新钊, 等. 两淮煤田煤系天然气勘探开发研究进展[J]. 煤炭科学技术, 2018, 46(1): 245-251, 237. DOI: 10.13199/j.cnki.cst.2018.01.036. [29] 赵志义, 张文永, 孙贵, 等. 两淮含煤岩系煤层气与页岩气富集特征及共采选区评价[J]. 安徽地质, 2019, 29(3): 179-183. DOI: 10.3969/j.issn.1005-6157.2019.03.006. [30] 余坤, 万志军, 琚宜文, 等. 淮北杨柳矿区煤系构造热演化对页岩气生成与保存的影响[J]. 地质学报, 2023, 97(8): 2690-2701. DOI: 10.19762/j.cnki.dizhixuebao.2023244. [31] Yu K, Ju Y W, Qian J, et al.Burial and thermal evolution of coal-bearing strata and its mechanisms in the southern North China Basin since the Late Paleozoic[J]. International Journal of Coal Geology, 2018, 198: 100-115. DOI: 10.1016/j.coal.2018.09.007. [32] Tong L, Luo Y, Zhou F, et al.Genetic mechanisms of coalbed methane in typical districts from Huaibei Coalfield, Eastern China[J]. Geodinamica Acta, 2018, 30(1): 241-248. DOI: 10.1080/09853111.2018.1493885. [33] Song X, Chen T J, Zhang D L.The acoustic characteristics of tectonically deformed coal in Huaibei Coalfield[J]. Energies, 2023, 16(13): 5179. DOI: 10.3390/en16135179. [34] Qu K X, Guo S B.Tightening genesis and gas charging characteristics of the Taiyuan Formation sandstone reservoir in the Taikang uplift, southern North China Basin[J]. Petroleum Science Bulletin, 2022, 7(3). DOI: 10.3969/j.issn.2096-1693.2022.03.027. [35] Wu H J, Liu S G, He Y S, et al.Mesozoic slab-derived magmas from mid-eastern China: Responses to a ridge-transform fault-ridge subduction system[J]. Chemical Geology, 2023, 617: 121259. DOI: 10.1016/j.chemgeo.2022.121259. [36] Zheng S, An Y F, Lai C, et al.Genesis of high-Mg adakites in the southeastern margin of North China Craton: Geochemical and U-Pb geochronological perspectives[J]. Frontiers in Earth Science, 2021, 9: 731233. DOI: 10.3389/feart.2021.731233. [37] 杨德彬, 许文良, 裴福萍, 等. 徐淮地区早白垩世adakitic岩石的年代学和Pb同位素组成: 对岩浆源区与华北克拉通东部构造演化的制约[J]. 岩石学报, 2008, 24(8): 1745-1758. DOI: 10.3969/j.issn.1000-0569.2007.02.017. [38] Yang D B, Xu W L, Zhao G C, et al.Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton[J]. Gondwana Research, 2016, 38: 220-237. DOI: 10.1016/j.gr.2015.11.013. [39] Yang H T, Yang D B, Xu W L, et al.Recycling of continental crust in the southern North China Craton: Constraints from the Sr-Nd-Pb-Hf-O isotopic compositions of Early Cretaceous Funiushan granites[J]. Gondwana Research, 2021, 99: 1-20. DOI: 10.1016/j.gr.2021.06.014. [40] Sweeney J J, Burnham A K. Evaluation of a Simple-Model of Vitrinite Reflectance Based on Chemical-Kinetics [J]. Aapg Bulletin-American Association of Petroleum Geologists, 1990, 74(10): 1559-70. https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:A1990EH25900003. [41] 闫晓英, 贺蒙. 气体吸附BET法测量固态物质比表面积不确定度评定[J]. 现代测量与实验室管理, 2008, (3): 20-22. DOI: 10.16428/j.cnki.cn11-4827/t.2008.03.004. [42] Liu B, Mohammadi M R, Ma Z L, et al.Evolution of porosity in kerogen type I during Hydrous and anhydrous pyrolysis: Experimental study, mechanistic understanding, and model development[J]. Fuel, 2023, 338: 127149. DOI: 10.1016/j.fuel.2022.127149. [43] Liu S F, Gurnis M, Ma P F, et al.Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200Ma[J]. Earth-Science Reviews, 2017, 175: 114-142. DOI: 10.1016/j.earscirev.2017.10.012. [44] Liu S F, Ma P F, Zhang B, et al. The horizontal slab beneath east Asia and its subdued surface dynamic response[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021156. DOI: 10.1029/2020JB021156. [45] Opera A, Alizadeh B, Sarafdokht H, et al.Burial history reconstruction and thermal maturity modeling for the Middle Cretaceous-Early Miocene Petroleum System, southern Dezful Embayment, SW Iran[J]. International Journal of Coal Geology, 2013, 120: 1-14. DOI: 10.1016/j.coal.2013.08.008. [46] Wang G C, Ju Y W, Bao Y, et al.Coal-bearing organic shale geological evaluation of Huainan-Huaibei Coalfield, China[J]. Energy & Fuels, 2014, 28(8): 5031-5042. DOI: 10.1021/ef501285x. [47] Chen S B, Gong Z, Li X Y, et al.Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation[J]. Geoscience Frontiers, 2021, 12(6): 101244. DOI: 10.1016/j.gsf.2021.101244. [48] Qian T, Liu S F, Li W P, et al.Early-Middle Jurassic evolution of the northern Yangtze foreland basin: a record of uplift following Triassic continent-continent collision to form the Qinling-Dabieshan orogenic belt[J]. International Geology Review, 2015, 57(3): 327-341. DOI: 10.1080/00206814.2015.1006270. [49] Tang J, Wang F, Wang Y N, et al.Age, formation mechanisms, spatial extent, and geodynamic effects of the eastern and northeastern Asian big mantle wedges[J]. Earth-Science Reviews, 2023, 237: 104324. DOI: 10.1016/j.earscirev.2023.104324. [50] Peng T, Wu J W, Ren Z Q, et al.The distribution of terrestrial heat flow and its structural control in the Huainan-Huaibei Coalfield[J]. Chinese Journal of Geophysics, 2015, 58(4): 352-362. DOI: 10.1002/cjg2.20179. [51] Wang H F, Wang L, Cheng Y P, et al.Characteristics and dominant controlling factors of gas outburst in Huaibei coalfield and its countermeasures[J]. International Journal of Mining Science and Technology, 2013, 23(4): 591-596. DOI: 10.1016/j.ijmst.2013.07.019. [52] Wang L, Cheng L B, Cheng Y P, et al.Thermal effects of magmatic sills on coal seam metamorphism and gas occurrence[J]. Bulletin of Volcanology, 2014, 76(4): 803. DOI: 10.1007/s00445-014-0803-0. [53] Chen S B, Yao S H, Wang Y, et al.Investigation of pore evolution and variation with Magma intrusion on Permian Gufeng shale formation and their implications on gas enrichment[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104277. DOI: 10.1016/j.jngse.2021.104277. [54] Zhu G, Jiang D Z, Zhang B L, et al.Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. DOI: 10.1016/j.gr.2011.08.005. [55] Zhang G L, Yao J H, Xu F, et al.Origin of the Mussau Trench in the Western Pacific: Geochemical and mineralogical constraints from basalts and serpentinized peridotites[J]. Chemical Geology, 2023, 642: 121798. DOI: 10.1016/j.chemgeo.2023.121798. [56] Liu J L, Shen L, Ji M, et al.The Liaonan/Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China Craton[J]. Tectonics, 2013, 32(5): 1121-1141. DOI: 10.1002/tect.20064. |