欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2008, Vol. 25 ›› Issue (3): 403-407.DOI: 10.7523/j.issn.2095-6134.2008.3.016

• 论文 • 上一篇    下一篇

基于神经网络的电离层F2层临界频率预测方法

金会彬1, 张灿1,2, 秦磊1   

  1. 1中科院研究生院信息科学与工程学院,北京 100049;
    2 信息安全国家重点实验室(中国科学院研究生院),北京100049
  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2008-05-15

Prediction method of the ionospheric F2 layer critical frequency based on neural networks

Jin Hui-bin1, Zhang Can1,2, Qin Lei1   

  1. 1 School of Information Science and Engineering ,Graduate University , Chinese Academy of Sciences, Beijing 100049, China ;
    2 State Key Laboratory of Information Security, Graduate University , Chinese Academy of Sciences, Beijing 100049, China
  • Received:1900-01-01 Revised:1900-01-01 Published:2008-05-15

摘要: 在电离层风暴期,现存的电离层F2层临界频率预测方法不能满足实际应用的要求。根据磁层ap系数和太阳黑子月均值作为风暴期训练序列,本文提出了一种基于神经网络的电离层F2层临界频率预测新方法。模拟结果表明,这种新方法比现有的预测方法(STORM模型和Cander提出的神经网络方法)具有更好的预测性能。

Abstract: During ionospheric storm periods, the existing prediction methods for the critical frequency of ionospheric F2 layer (foF2) can not satisfy the requirements of the practical applications. In this paper, a new prediction method for the foF2 based on neural networks is proposed. This method is driven by the previous time series of the ap index and the monthly mean of the solar spot number, while the output is the estimations of the foF2 in the next 24 hours. The simulation results indicate that the new method outperforms the existing prediction methods (such as STORM model, or neural network method proposed by Cander).