欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2010, Vol. 27 ›› Issue (1): 83-89.DOI: 10.7523/j.issn.2095-6134.2010.1.012

• 论文 • 上一篇    下一篇

基于感知范围的鱼群优化算法

冯春时, 丛爽   

  1. 中国科学技术大学自动化系,合肥 230027
  • 收稿日期:2009-01-05 修回日期:2009-09-03 发布日期:2010-01-15
  • 通讯作者: 丛爽
  • 基金资助:

    国家自然科学基金项目(60774098)资助 

A novel fish shoal algorithm based on sensing zones

FENG Chun-Shi, CONG Shuang   

  1. Department of Automation, University of Science and Technology of China, Hefei 230027, China
  • Received:2009-01-05 Revised:2009-09-03 Published:2010-01-15

摘要:

模拟鱼群在空间的游动行为. 以个体鱼之间的实空间欧式距离为量度,将个体鱼感知范围内的邻域空间分为吸引、排斥和中性区域,同时考虑所有个体鱼都有向食物源运动的趋势. 利用参数选取实验来确定感知范围参数;通过标准测试函数实验对所提出的新鱼群算法和人工鱼群算法进行了对比分析. 在此基础上,对两种算法的搜索步长进行了实验研究. 最后,在基本算法的基础上提出了线性变化权重因子策略,13个测试函数的实验证实此策略可以进一步提升算法性能.

关键词: 新鱼群算法, 空间感知范围, 群智能优化

Abstract:

The algorithm simulates the movement of fish shoal in the space. According to the Euclidean distance, the neighborhood of the fish individual is divided into attraction zone, repulsion zone, and neutral zone. Furthermore, the movement trend to the food source is considered. The neighborhood factors were determined by means of the experiments. The experiments were carried out on the benchmark functions for comparison of the Novel Fish-shoal Algorithm with the Artificial Fish-swarm Algorithm. The search step size was studied experimentally. Finally a linear change weight factor strategy was proposed and the experimental results with 13 test functions verified that the proposed strategy can further improve the performance of the algorithm.

Key words: novel fish shoal algorithm, space sensing zone, optimization of swarm intelligence

中图分类号: