欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2009, Vol. 26 ›› Issue (4): 517-521.DOI: 10.7523/j.issn.2095-6134.2009.4.013

• 论文 • 上一篇    下一篇

基于SVM的实时自动超声钢轨伤损检测分类系统

郝炜1, 李成桐2   

  1. 1 中国科学院空间科学与应用研究中心, 北京 100080; 2 北京博速公司, 北京 100088
  • 修回日期:2009-04-13 发布日期:2009-07-15

Automatic real-time SVM-based ultrasonic rail flaw detection and classification system

HAO Wei1, LI Cheng-Tong2   

  1. 1 Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080,China; 2 Bosoon Software Co. Ltd, Beijing 100088, China
  • Revised:2009-04-13 Published:2009-07-15

摘要:

介绍了一个更有效的基于支持向量机的实时超声波钢轨伤损自动检测分类系统.根据钢轨伤损的特点提取特征量,利用基于支持向量机的分类预测算法实现钢轨伤损的实时检测分类,并基于统计处理的计算伤损尺寸.在嵌入式系统DSP中利用该机器学习算法实现了伤损的实时处理和测试.实现了钢轨伤损实时报警、显示伤损类型、所处轨内位置及程度.

关键词: 模式识别, 超声波钢轨探伤, 支持向量机, DSP实时信号处理

Abstract:

This paper describes a more efficient real time SVM(support vector machine)-based ultrasonic rail defect detection and classification system. Feature extraction is achieved based on the attribute of ultrasonic rail defect and then SVM classification prediction algorithm and statistical processing are used to realize classification and calculating the size of the rail defect. This machine learning algorithm is tested in DSP and the type, grade and location of the defects are displayed in real-time.

Key words: pattern recognition, ultrasonic rail flaw detection, support vector machine(SVM), DSP real-time signal processing

中图分类号: