| [1] Diffie W, Hellman M. New directions in cryptography . IEEE Transactions on Information Theory, 1976, 22: 644-654.
 
 [2] Miller V. Uses of elliptic curves in cryptography // Advances in Cryptology–CRYPTO’85, Lecture Notes in Computer Science 218. New York: Springer-Verlag, 1986: 417-426.
 
 [3] Koblitz N. Elliptic curve cryptosystem
 [J]. Math Comp, 1987, 48(5):203-209.
 
 [4] Koyama K, Maurer U, Okamoto T, et al. New public-key schemes based on elliptic curves over the ring Zn //Advances in Cryptology-CRYPTO’91, Lecture Notes in Computer Science 576. Berlin: Springer-Verlag, 1993: 252-266.
 
 [5] Kurosawa K, Okada K, Tsujii S. Low exponent attack against elliptic curve RSA //Advances in Cryptology-ASIACRYPT’94, Lecture Notes in Computer Science 917. Berlin: Springer-Verlag, 1995: 376-383.
 
 [6] Lange H, Ruppert W. Complete systems of addition laws on abelian varieties
 [J]. Invert Math, 1985, 79: 603-610.
 
 [7] Lange H, Ruppert W. Addition laws on elliptic curves in arbitrary characteristics
 [J]. J Algebra, 1987, 107: 106-116.
 
 [8] Lenstra H W Jr. Elliptic curves and number-theoretic algorithms //Proceedings of the International Congress of Mathematicians. Berkeley 1986. Amer Math Soc, 1988: 99-120.
 
 [9] Bosma W, Lenstra H W Jr. Complete systems of two addition laws for elliptic curves
 [J]. J Number Theory, 1995, 53(2): 229-240.
 
 [10] Xu M Z, Zhao C L. Cryptography on elliptic curves over p-adic number fields
 [J]. Science in China Series F: Information Sciences, 2008, 51(3): 258-272.
 
 [11] Washington L C. Elliptic curves: number theory and cryptography
 [M]. Chapman & Hall/CRC, 2003.
 
 [12] Wan Z X. Lectures on finite fields and galois rings
 [M]. World Scientific Publishing Co Pte Ltd, 2006.
 
 [13] Serre J P. Local fields
 [M]. Springer-Verlag, 1979.
 |