欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2012, Vol. ›› Issue (6): 738-742.DOI: 10.7523/j.issn.2095-6134.2012.6.003

• 数学与物理学 • 上一篇    下一篇

一类具有扩散系数和连续偏差变元的中立型偶阶偏泛函微分方程的振动性

林文贤   

  1. 韩山师范学院数学与应用数学系, 广东 潮州 521041
  • 收稿日期:2011-06-20 修回日期:2012-01-19 发布日期:2012-11-15
  • 通讯作者: 林文贤

Oscillation of a class of even-order neutral partial functional differential equations with continuous deviating arguments and diffusion coefficients

LIN Wen-Xian   

  1. Department of Mathematics and Applied Mathematics, Hanshan Normal University, Chaozhou 521041, Guangdong, China
  • Received:2011-06-20 Revised:2012-01-19 Published:2012-11-15

摘要: 研究一类具有连续偏差变元和非线性扩散系数的偶阶中立型偏泛函微分方程的振动性. 借助广义Riccati变换和微分不等式,获得这类方程分别在Robin和Dirichlet边值条件下所有解振动的若干新的充分性条件,表明其振动是由时滞量引起的. 所得结果推广了最近文献的相关结果.

关键词: 非线性扩散系数, 偏泛函微分方程, 振动性, 广义Riccati变换

Abstract: Oscillation of a class of even-order neutral partial functional differential equations with continuous deviating arguments and nonlinear diffusion coefficients is studied. By employing the generalized Riccati transformation and the differential inequalities, some new sufficient conditions for oscillation of all the solutions of such equations are obtained under Robin and Dirichlet boundary value conditions. The results show that the oscillation is caused by delay. The results generalize some recently published results.

Key words: nonlinear diffusion coefficient, partial functional differential equation, oscillation, generalized Riccati transformation

中图分类号: