欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2003, Vol. 20 ›› Issue (3): 334-340.DOI: 10.7523/j.issn.2095-6134.2003.3.012

• 论文 • 上一篇    下一篇

基于CBERS-1图像的干旱半干旱区土地利用分类

刘爱霞, 刘正军, 王长耀, 牛铮   

  1. 中国科学院遥感应用研究所遥感信息科学重点实验室, 北京 100101
  • 收稿日期:2002-10-09 发布日期:2003-05-10
  • 基金资助:

    国家科技攻关计划项目(2001DFBA0005);中国科学院知识创新工程重大项目--中国陆地和近海生态系统碳收支研究(KZCX1SW01)资助

Landuse Classification in Arid and Semi-Arid Areas Using CBERS-1 Imagery

LIU AiXia, LIU ZhengJun, WANG ChangYao, NIU Zheng   

  1. Key Laboratory of Remote Sensing Information Sciences, Institnte of Remote Sensing Application, Chinese Cademg of Sciences, Beijing 100101, China
  • Received:2002-10-09 Published:2003-05-10

摘要:

以中巴资源卫星CBERS 1图像数据为信息源,分别采用最大似然法、BP神经网络和Fuzzy ARTMAP神经网络 3种分类器,以位于干旱区的中国新疆石河子地区为例,进行了土地利用计算机自动分类。结果认为,3种方法中以Fuzzy ARTMAP神经网络法分类精度最高,分别比最大似然法和BP神经网络法提高了 10.69%和 6.84%。同时也证实了CBERS 1图像在土地利用调查中的实用性

关键词: CBERS-1图像, BP神经网络, Fuzzy-ARTMAP神经网络, 土地利用分类

Abstract:

Discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, Which in case of our study is Shihezi Municipality, Xinjiang Province.Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier.The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69 %and 6.84 % thanMaximum likelihood and BP neural network, respectively.Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

Key words: CBERS-1 image, BP neural network, Fuzzy-ARTMAP neural network, land use classification

中图分类号: