欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2016, Vol. 33 ›› Issue (5): 596-603.DOI: 10.7523/j.issn.2095-6134.2016.05.004

• 数学与物理学 • 上一篇    下一篇

有去噪和尺度放大的单幅图像超分辨率重建

刘晓1, 郭田德1,2, 韩丛英1,2, 李明强1   

  1. 1 中国科学院大学数学科学学院, 北京 100049;
    2 中国科学院大数据挖掘与知识管理重点实验室, 北京 100190
  • 收稿日期:2015-12-25 修回日期:2016-03-15 发布日期:2016-09-15
  • 通讯作者: 韩丛英
  • 基金资助:

    Supported by the National Nature Science Foundation of China (11331012,11571014,71271204)

Super resolution reconstruction of single image with denoising and upscaling

LIU Xiao1, GUO Tiande1,2, HAN Congying1,2, LI Mingqiang1   

  1. 1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    2 Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, Chin
  • Received:2015-12-25 Revised:2016-03-15 Published:2016-09-15
  • Supported by:

    Supported by the National Nature Science Foundation of China (11331012,11571014,71271204)

摘要:

采用非局部均值,全变差正则化和稀疏编码,提出一种新的单幅图像超分辨率重建方法.首先,用非局部均值方法对低分辨率图像进行去噪处理,可保证几何结构的一致性.然后,将去噪后的低分辨率图像代入重建模型得到高分辨率图像的低频分量,而高分辨率图像的高频分量则通过学习的方法在数据库中查找得到.将得到的低频分量与高频分量相加得到初始的高分辨率图像的恢复结果.最后对初始的恢复图像进行一些全局优化即可得到最终恢复的高分辨率图像结果.实验结果证明该方法得到的高分辨率图像结果具有鲁棒性且更自然.

关键词: 超分辨率, 非局部均值, 全变差, 稀疏编码

Abstract:

In this study, a novel approach to single image resolution reconstruction is proposed based on nonlocal means, total variation-regularization, and sparse coding. Firstly, low-resolution (LR) image is denoised by nonlocal means which preserves geometric structure well. Then, high-resolution (HR) regularization-based component is obtained from up-scaling the LR image by using a reconstruction model. Image generation process is combined with total-variation regularization so that new image maintains part of the sharpness of the edges and some details. Meanwhile, the HR learning-based component is reconstructed by exploring the sparse coding which explores the co-occurrence relationship between LR training patches and their corresponding HR high-frequency patches. The regularization-based component and the learning-based component are combined to obtain an initial HR image. Finally, the global reconstruction constraint is applied to the initial image for making the final HR image natural. Experimental results show that our method is natural and robust.

Key words: super resolution, nonlocal means, total variation, sparse coding

中图分类号: