欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2018, Vol. 35 ›› Issue (1): 96-101.DOI: 10.7523/j.issn.2095-6134.2018.01.013

• 信息与电子科学 • 上一篇    下一篇

基于双频共轭的外辐射源雷达多普勒徙动的解决方法

张丹1,2, 吕晓德1, 李道京1, 杨鹏程1,2, 柴致海1,2   

  1. 1. 中国科学院电子学研究所微波成像技术国家级重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2016-10-21 修回日期:2017-01-22 发布日期:2018-01-15
  • 通讯作者: 张丹
  • 基金资助:
    国家部委预研项目资助

Dealing with Doppler migration for passive radar based on SDCFCP

ZHANG Dan1,2, LÜ Xiaode1, LI Daojing1, YANG Pengcheng1,2, CHAI Zhihai1,2   

  1. 1. National Key Laboratory of Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-10-21 Revised:2017-01-22 Published:2018-01-15

摘要: 长时间相参积累是外辐射源雷达提高目标增益的主要方法。然而,在信号积累的过程中,由于外辐射源雷达双基构型下目标切向运动状态的影响,目标出现多普勒单元徙动,严重影响目标增益,降低目标探测距离。在外辐射源雷达双基构型的基础上,分析运动目标出现多普勒徙动问题成因,首次引入双频共轭算法。此方法使合成信号的等效波长大大增长,实现了多普勒二次项调频率趋于零,从而解决多普勒徙动问题。同时,提出压缩方位向信号重频的改进方式,进一步改善了双频共轭处理微弱目标的能力。该算法具有实现简单、计算量小,可应用于多目标场景的优势。仿真和实测数据表明,该算法可以解决运动目标检测中出现的多普勒徙动问题,提高目标信噪比。

关键词: 外辐射源雷达, 相参积累, 多普勒徙动, 双频共轭

Abstract: Long-term coherent integration is a main method to improve gain in target identification for passive radar. However, tangential-speed leads to Doppler expansion based on bistatic model which decreases the gain and then degrades the detection range. In this work we discuss the contribution factor of Doppler migration and propose an algorithm to deal with Doppler migration based on sub-band double carrier frequency conjugated processing (SDCFCP). SDCFCP increases the equivalent wavelength of composite signal, makes Doppler quadratic term close to zero, and solves the Doppler migration problem. We also propose an improved method to decrease PRF at azimuth and enhance the weak target detection ability. SDCFCP can be applied conveniently with little calculation work. Moreover, the algorithm is useful on multi-target scenario. Finally, experiments based on simulated and real signals verify the proposed algorithm.

Key words: passive radar, coherent integration, Doppler migration, SDCFCP

中图分类号: