[1] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[2] 康健,左宪章,唐力伟,等.基于灰色支持向量机的裂纹扩展信息预测研究[J].机械强度, 2010, 32(5):120-123.
[3] Cao L J,Lee H P,Chong W K. Modified support vector novelty detector using training data with outliers[J]. Pattern Recognition Letters, 2003, 24(14):2479-2487.
[4] Wang B X, Japkowicz N. Boosting support vector machines for imbalanced data sets[J]. Knowledge and Information Systems, 2010, 25(1):1-20.
[5] Lin C F, Wang S D. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2):464-471.
[6] Huang H P, Liu Y H. Fuzzy support vector machine for pattern recognition and data mining[J]. International Journal of Fuzzy Systems, 2002, 4(3):826-835.
[7] Jiang X, Yi Z, Lü J C. Fuzzy SVM with a new fuzzy membership function[J]. Neural Computing & Applications, 2006, 15(3):268-276.
[8] Castillo B, Gennaro S D, Monaco S, et al. On regulation under sampling[J]. IEEE Transactions on Automatic Control, 1997, 42(6):864-868.
[9] 韩家炜. 数据挖掘:概念与技术[M].北京:机械工业出版社, 2012:1-3.
[10] McClave J Y, Benson P G, Sincich T. 商务与经济统计学[M]. 易丹辉,李扬,译.北京:中国人民大学出版社, 2014:67-69.
[11] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2011, 16(1):321-357.
[12] Chen L, Bao L, Li J, et al. An aliasing artifacts reducing approach with random undersampling for spatiotemporally encoded single-shot MRI[J]. Journal of Magnetic Resonance, 2013, 237(6):115-124.
[13] Kubat M, Matwin S. Addressing the curse of imbalanced training sets:one-sided selection[C]//Fisher D H. 14th International Conference on Machine Learning. San Francisco:MorganKaufmann Press, 1997:179-186.
[14] 谢纪刚,裘正定.非平衡数据集Fisher线性判别模型[J].北京交通大学学报, 2006, 30(5):15-18.
[15] 瞿俊,姜青山,翁芳菲. 基于重叠度的层次聚类算法[J].计算机研究与发展, 2007, 44(s2):181-186.
[16] Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines[J]. Journal of Machine Learning Research, 2001, 2(2):265-292.
[17] 浮盼盼.大规模不均衡数据分类方法研究[D]. 大连:辽宁师范大学, 2014.
[18] Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines[C]//International Joint Conference on Artificial Intelligence. Stockholm:IJCAI Press, 1999:55-60.
[19] Batuwita R, Palade V. FSVM-CIL:fuzzy support vector machines for class imbalance learning[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(3):558-571. |