欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2018, Vol. 35 ›› Issue (6): 731-734.DOI: 10.7523/j.issn.2095-6134.2018.06.003

• 数学与物理学 • 上一篇    下一篇

序贯最大最小距离设计的空间填充性

滕一阳1, 武赟2, 熊世峰2, 杨建奎1   

  1. 1 北京邮电大学理学院, 北京 100876;
    2 中国科学院数学与系统科学研究院, 北京 100190
  • 收稿日期:2017-09-29 修回日期:2017-11-16 发布日期:2018-11-15
  • 通讯作者: 熊世峰
  • 基金资助:
    国家自然科学基金(11471172,11671386)资助

A space-filling property of sequential maximin distance designs

TENG Yiyang1, WU Yun2, XIONG Shifeng2, YANG Jiankui1   

  1. 1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2 Academy of Mathmetics and Systems Science, Chinese Academy of Science Beijng 100190, China
  • Received:2017-09-29 Revised:2017-11-16 Published:2018-11-15

摘要: 最大最小距离设计是计算机试验中常用的一种空间填充设计。讨论序贯最大最小距离设计的空间填充性质,证明在样本量趋于无穷时,这种序贯设计中的点在试验区域内达到稠密.

关键词: 序贯设计, 空间填充设计, 计算机试验

Abstract: Maximin distance designs, as a class of space-filling designs, are commonly used in computer experiments. In this paper we discuss the space-filling properties of sequential maximin distance design. We prove that the points in such a sequential design become dense in the experimental region as the sample size goes to infinity.

Key words: sequential design, space-filling design, computer experiment

中图分类号: