欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (4): 532-538.DOI: 10.7523/j.issn.2095-6134.2020.04.013

• 电子科学 • 上一篇    下一篇

基于基因表达式编程的多星成像任务规划算法

明卫鹏1,2, 马广彬1, 章文毅1   

  1. 1. 中国科学院遥感与数字地球研究所, 北京 100094;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2018-11-30 修回日期:2019-03-04 发布日期:2020-07-15
  • 通讯作者: 马广彬
  • 基金资助:
    天空地一体化协同观测、数据整合与应急信息提取技术研究国家重点研发计划(2016YFB0502502)资助

Multi-satellite imaging task planning algorithms based on gene expression programming

MING Weipeng1,2, MA Guangbin1, ZHANG Wenyi1   

  1. 1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-11-30 Revised:2019-03-04 Published:2020-07-15
  • Supported by:
     

摘要: 通过分析区域目标多星成像任务规划的约束条件,建立相应的约束满足模型,并分析模型的数学复杂度。为改善遗传算法应用于多星成像任务规划问题时,全局搜索能力较弱的缺点,首次提出使用基因表达式编程求解此问题。在算法实现的过程中,设计出倒置遗传算子增强最优解的搜索,并引入知识库保留迭代过程中的精英个体。结果表明,基因表达式编程不仅有效和合理地解决了多星成像规划问题,而且极大地提高了解的精度。

 

关键词: 基因表达式编程, 区域目标, 多星成像规划, 遗传算法

Abstract: The constraint-satisfaction model is established by analyzing the constraints of multi-satellite imaging mission planning for regional targets, and the mathematical complexity of the model is analyzed. In order to improve the weak global searching ability of the genetic algorithm in multi-satellite imaging mission planning, the gene expression programming (GEP) is first proposed in this work to solve the problem. In the process of algorithm implementation, the inverted genetic operator is designed to enhance the search ability for the optimal solution, and the repository is introduced to preserve elite individuals in the iteration process. The results show that the gene expression programming (GEP) is effective and reasonable in solving multi-satellite imaging planning problems and greatly improves the accuracy of the solution.

Key words: gene expression programming(GEP), regional target, multi-satellite imaging planning, genetic algorithm

中图分类号: