欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (4): 570-576.DOI: 10.7523/j.issn.2095-6134.2020.04.018

• 简报 • 上一篇    

基于改进一对一算法的网络流量分类

赵择, 徐佑宇, 唐亮, 卜智勇   

  1. 中国科学院上海微系统与信息技术研究所, 上海 200050;中国科学院大学, 北京 100049
  • 收稿日期:2018-12-12 修回日期:2019-03-13 发布日期:2020-07-15
  • 通讯作者: 赵择
  • 基金资助:
     

Internet traffic classification based on the improved one-versus-one method

ZHAO Ze, XU Youyu, TANG Liang, BU Zhiyong   

  1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-12 Revised:2019-03-13 Published:2020-07-15
  • Supported by:
     

摘要: 准确的流量分类是网络管理和网络安全的有效保障。近年来基于机器学习的网络流量分类备受关注,特征选择对于机器学习的分类效果有重要影响。但使整体分类性能达到最优的特征选择子集,并不一定使特定类别的分类性能达到最佳,这降低了分类性能可达到的上限,对此提出基于改进的一对一算法的流量分类模型。首先采用一对一的思想将流量多分类任务拆解为多个相互独立的二分类子任务,分别对任意两类流量进行特征选择和流量分类。所有子任务的分类结果采用Stacking策略结合。实验表明,多种机器学习算法与特征选择算法应用于该模型的准确度较经典模型均有提升。

 

关键词: 一对一, 流量分类, Stacking策略, 机器学习, 特征选择

Abstract: Accurate traffic classification is an effective guarantee for network management and security. Machine learning-based internet traffic classification became particularly notable in recent years, and feature selection had an important impact on the performance of machine learning. However, the feature selection subset that optimizes the overall classification performance is not the subset that optimizes the classification performance of a particular class, which reduces the upper limit of classification performance. Therefore,a new traffic classification model based on the improved one-versus-one method is proposed. In the new traffic classification model, traffic multi-classification task is split into multiple independent sub-tasks.Then feature selection and traffic classification are performed on any two classes of traffic,and the Stacking strategy is used to combine the results of all sub-tasks. The experiments show that the applications of several machine learning and feature selection algorithms to this model improve accuracies compared with those to the classical model.

Key words: one-versus-one, traffic classification, Stacking strategy, machine learning, feature selection

中图分类号: