[1] Yairi T, Kawahara Y, Fujimaki R, et al. Telemetry-mining:a machine learning approach to anomaly detection and fault diagnosis for space systems[C]//2nd IEEE International Conference on Space Mission Challenges for Information Technology(SMC-IT'06), Pasadena, CA, USA:IEEE Press, 2006:466-476. [2] Hayden S C, Sweet A J, Christa S E, et al. Advanced diagnostic system on earth observing one[C]//Proceedings of AIAA Space 2004 Conferace and Exhibit, 2004:14. [3] 彭喜元,庞景月,彭宇,等.航天器遥测数据异常检测综述[J].仪器仪表学报, 2016, 37(9):1929-1945. [4] Chandola V, Banerjee A, Kumar V. Anomaly detection:a survey[J]. ACM Computing Surveys, 2009, 41(3):1-58. [5] Song X Y, Wu M X, Jermaine C, et al. Conditional anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2007,19(5):631-645. [6] 谢锦生, 郭立, 陈运必, 等. 基于时空惊奇计算的视频异常检测方法[J]. 中国科学院研究生院学报, 2013, 30(1):83-89. [7] Ma J, Perkins S. Time-series novelty detection using one-class support vector machines[C]//Proceedings of the International Joint Conference on Neural Networks, 2003. Portland, CR, USA:IEEE Press, 2003:1741-1745. [8] Cohen G, Hilario M, Pellegrini C, et al. One-class support vector machines with a conformal kernel:a case study in handling class imbalance[C]//Structural, Syntactic, and Statistical Pattern Recognition. Springer-Verlag Berlin Heidelberg, 2004, 3138:850-858. [9] 陈斌. 异常检测方法及其关键技术研究[D]. 南京:南京航空航天大学, 2013. [10] 李楠,张云燕,李言俊. 一种自旋稳定卫星姿态传感器数据异常的诊断方法[J]. 宇航学报, 2011, 32(6):1327-1332. [11] Spiegelberg J, Rusz J. Can we use PCA to detect small signals in noisy data?[J]. Ultramicroscopy, 2017, 172:40-46. [12] Wang X, Kruger U, Irwin G W, et al. Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis[J]. IEEE Transactions on Control Systems Technology, 2008, 16(1):122-129. [13] Iverson D L, Martin R, Schwabacher M, et al. General purpose data-driven monitoring for space operations[J]. Journal of Aerospace Computing, Information, and Communication, 2012, 9(2):26-44. [14] Iverson D L. Inductive system health monitoring[C]//Proceedings of the International Conference on Artificial Intelligence & Proceedings of the International Conference on Machine Learning:Models, Technologies & Applications, Las Vegas, Nevada, USA, 2004:605-611. [15] Ding J W, Liu Y B, Zhang L, et al. An anomaly detection approach for multiple monitoring data series based on latent correlation probabilistic model[J]. Applied Intelligence, 2016, 44(2):340-361. [16] Zhong S S, Luo H, Lin L, et al. An improved correlation-based anomaly detection approach for condition monitoring data of industrial equipment[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, ON, Canada:IEEE Press, 2016:1-5. [17] Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062):1518-1524. [18] Pang J Y, Liu D T, Peng Y, et al. Anomaly detection based on uncertainty fusion for univariate monitoring series[J]. Measurement, 2017, 95:280-292. |