欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2021, Vol. 38 ›› Issue (6): 841-851.DOI: 10.7523/j.issn.2095-6134.2021.06.015

• 计算机科学 • 上一篇    

基于原型学习改进的伪标签半监督学习算法

杨雨龙1, 郭田德1,2, 韩丛英1,2   

  1. 1. 中国科学院大学数学科学学院, 北京 100049;
    2. 中国科学院大数据挖掘与知识管理重点实验室, 北京 100190
  • 收稿日期:2021-04-15 修回日期:2021-05-12 发布日期:2021-11-16
  • 通讯作者: 韩丛英
  • 基金资助:
    国家自然科学基金(11731013,U19B2040,11991022)和中国科学院战略性先导科技专项(XDA27000000)资助

Improving pseudo-labeling semi-supervised learning based on prototype learning

YANG Yulong1, GUO Tiande1,2, HAN Congying1,2   

  1. 1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    2. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-04-15 Revised:2021-05-12 Published:2021-11-16

摘要: 近年来,基于图像增广和一致性正则化的半监督学习(semi-supervised learning, SSL)方法被广泛应用并取得了很大的成功。然而,由于伪标签算法存在"认知偏误"问题,即模型的错误通过伪标签累积从而难以改正,因此很少有人关注基于伪标签(pseudo-labeling, PL)的半监督学习方法。提出一种特征图的原型图注意力特征修正模型(prototype attention layer, PAL):即在神经网络映射的特征空间上学习一个图注意力模型,将此模型应用于特征空间中,可以充分利用原型的信息来修正特征,将修正后的特征所产生的伪标签与原型分配产生的伪标签随机线性组合,从而得到新的伪标签。将这一模型应用到2种伪标签半监督学习框架上所得到的算法(prototype attention improved pseudo-labeling,PAIPL),在CIFAR-10和CIFAR-100的多个半监督分类问题上进行测试,分类准确率都得到了显著提升。特别地,将提出的修正模型应用于伪标签半监督学习PLCB框架时,又提出相互混合的监督技术,从而取得了更好的效果。还将提出的模型应用到其他多个伪标签半监督学习框架上,并在多个数据集上进行实验,验证了所提出的模型作为一个附加模块是普适且有效的。

关键词: 半监督学习, 伪标签, MixUp, 图注意力模型, 原型学习

Abstract: In recent years, semi-supervised learning (SSL) methods based on image augmentation and consistency regularization have been widely used and have achieved great success. However, little attention has been paid to pseudo-labeling (PL)-based semi-supervised learning methods because of the "confirmation bias" problem, i.e., errors in the model are accumulated by wrong pseudo-labels and thus difficult to be corrected. In this paper, we propose a feature refinement model based on the feature space graph. The model learns a graph attention model on the feature space mapped by the neural network. We apply this model to the feature space to make use of the information of the prototypes to refine the features. The pseudo-labels generated by the refined features are randomly and linearly combined with the pseudo-labels generated by the prototypes assignment to obtain new pseudo-labels. In this paper, we apply this module to two pseudo-labeling semi-supervised learning frameworks and achieve significant accuracy improvements in several CIFAR-10 and CIFAR-100 semi-supervised classification problems. In particular, we apply our feature refinement model to the pseudo-labeling semi-supervised learning framework PLCB and add the proposed mutual mix supervision techniques to achieve good results on this framework. By applying the proposed feature refinement module to several pseudo-labeling semi-supervised learning frameworks and conducting experiments on several datasets, the proposed algorithm is demonstrated to be universal and effective as an add-on module.

Key words: semi-supervised learning, pseudo-labeling, MixUp, graph attention model, prototype learning

中图分类号: