[1] Wang X, Ji H Y, Shi C, et al. Heterogeneous graph attention network[C]//WWW'19: The World Wide Web Conference. May 13-17, 2019, San Francisco, CA, USA. New York: ACM, 2019: 2022-2032. DOI: 10.1145/3308558.3313562. [2] Kriege N M, Johansson F D, Morris C. A survey on graph kernels[J]. Applied Network Science, 2020, 5(1): 1-42. DOI: 10.1007/s41109-019-0195-3. [3] Nikolentzos G, Siglidis G, Vazirgiannis M. Graph kernels: a survey[J]. Journal of Artificial Intelligence Research, 2021, 72: 943-1027. DOI: 10.1613/jair.1.13225. [4] Foggia P, Percannella G, Vento M. Graph matching and learning in pattern recognition in the last 10 years[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28(1): 1450001. DOI: 10.1142/S0218001414500013. [5] Ma Y, Wang S H, Aggarwal C C, et al. Graph convolutional networks with EigenPooling[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. August 4-8, 2019, Anchorage, AK, USA. New York: ACM, 2019: 723-731. DOI: 10.1145/3292500.3330982. [6] Ying R, You J X, Morris C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. December 3-8, 2018, Montréal, Canada. New York: ACM, 2018: 4805-4815. DOI: 10.48550/arXiv.1806.08804. [7] Khasahmadi A H, Hassani K, Moradi P, et al. Memory-based graph networks[EB/OL].542020: arXiv: 2002.09518.(2020-02-21)[ 2023-03-06 ] https://arxiv.org/abs/2002.09518. [8] Lee J, Lee I, Kang J. Self-attention graph pooling[C]//International Conference on Machine Learning. PMLR, 2019: 3734-3743. DOI: 10.48550/arXiv.1904.08082. [9] Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis[M]. Cambridge, UK: Cambridge University Press, 2004. DOI: 10.1017/CBO9780511809682. [10] Haussler D. Convolution kernels on discrete structures[R]. Department of Computer Science, University of California at Santa Cruz, 1999. [11] Borgwardt K M, Kriegel H P. Shortest-path kernels on graphs[C]//Fifth IEEE International Conference on Data Mining (ICDM'05). November 27-30, 2005, Houston, TX, USA. IEEE, 2006: 8pp.. DOI: 10.1109/ICDM.2005.132. [12] Shervashidze N, Vishwanathan S V N, Petri T, et al. Efficient graphlet kernels for large graph comparison[C]//Artificial Intelligence and Statistics. PMLR, 2009: 488-495. [13] Shervashidze N, Schweitzer P, Van Leeuwen E J, et al. Weisfeiler-lehman graph kernels[J]. Journal of Machine Learning Research, 2011, 12: 2539-2561. [14] Yanardag P, Vishwanathan S V N. Deep graph kernels[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 10-13, 2015, Sydney, NSW, Australia. New York: ACM, 2015: 1365-1374. DOI: 10.1145/2783258.2783417. [15] Li Y J, Gu C J, Dullien T, et al. Graph matching networks for learning the similarity of graph structured objects[EB/OL]. 2019: arXiv: 1904.12787. (2019-04-29)[ 2023-03-06 ]https://arxiv.org/abs/1904.12787. [16] Bai Y S, Ding H, Bian S, et al. SimGNN: a neural network approach to fast graph similarity computation[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. February 11-15, 2019, Melbourne VIC, Australia. New York: ACM, 2019: 384-392. DOI: 10.1145/3289600.3290967. [17] Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning-Vol 70. August 6-11, 2017, Sydney, NSW, Australia. New York: ACM, 2017: 1263-1272. DOI: 10.48550/arXiv.1704.01212. [18] Zhang M H, Cui Z C, Neumann M, et al. An end-to-end deep learning architecture for graph classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1). DOI: 10.1609/aaai.v32i1.11782. [19] Morris C, Ritzert M, Fey M, et al. Weisfeiler and leman go neural: higher-order graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 4602-4609. DOI: 10.1609/aaai.v33i01.33014602. [20] Niepert M, Ahmed M, Kutzkov K. Learning convolutional neural networks for graphs[C]//Proceedings of the 33rd International Conference on Machine Learning-Vol 48. June 19-24, 2016, New York, NY, USA. New York: ACM, 2016: 2014-2023. DOI: 10.48550/arXiv.1605.05273. [21] Tzeng R C, Wu S H. Ego-CNN: distributed, egocentric representations of graphs for detecting critical structures[C]//Proceedings of the 36th International Conference on Machine Learning, 2019. DOI: 10.48550/arXiv.1906.09602. [22] Sun Y Z, Han J W. Meta-path-based search and mining in heterogeneous information networks[J]. Tsinghua Science and Technology, 2013, 18(4): 329-338. DOI: 10.1109/TST.2013.6574671. [23] Debnath A K, Lopez de Compadre R L, Debnath G, et al. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity[J]. Journal of Medicinal Chemistry, 1991, 34(2): 786-797. DOI: 10.1021/jm00106a046. [24] Wang X, Lu Y F, Shi C, et al. Dynamic heterogeneous information network embedding with meta-path based proximity[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3): 1117-1132. DOI: 10.1109/TKDE.2020.2993870. [25] Wale N, Watson I A, Karypis G. Comparison of descriptor spaces for chemical compound retrieval and classification[J]. Knowledge and Information Systems, 2008, 14(3): 347-375. DOI: 10.1007/s10115-007-0103-5. [26] Borgwardt K M, Ong C S, Schönauer S, et al. Protein function prediction via graph kernels[J]. Bioinformatics, 2005, 21(supp 1): i47-i56. DOI: 10.1093/bioinformatics/bti1007. [27] Narayanan A, Chandramohan M, Chen L H, et al. subgraph2vec: learning distributed representations of rooted sub-graphs from large graphs[EB/OL]. 2016: arXiv: 1606.08928.(2016-06-29)[ 2023-03-06 ] https://arxiv.org/abs/1606.08928. [28] Kondor R, Pan H. The multiscale Laplacian graph kernel[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. December 5-10, 2016, Barcelona, Spain. New York: ACM, 2016: 2990-2998. DOI: 10.48550/arXiv.1603.06186. [29] Dai H J, Dai B, Song L. Discriminative embeddings of latent variable models for structured data[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. June 19-24, 2016, New York, NY, USA. New York: ACM, 2016: 2702-2711. DOI: 10.48550/arXiv.1603.05629. [30] Atwood J, Towsley D. Diffusion-convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2016, 29. DOI: 10.48550/arXiv.1511.02136. [31] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. International Conference On Learning Representations, 2018. DOI: 10.48550/arXiv.1710.10903. [32] Peng H, Li J X, Gong Q R, et al. Motif-matching based subgraph-level attentional convolutional network for graph classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5387-5394. DOI: 10.1609/aaai.v34i04.5987. [33] Lu Y F, Shi C, Hu L M, et al. Relation structure-aware heterogeneous information network embedding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 4456-4463. DOI: 10.1609/aaai.v33i01.33014456. |