[1] Sacks I S, Linde A T, Suyehiro S, et al. Slow earthquakes and stress redistribution[J]. Nature, 1978, 275(5681): 599-602. DOI: 10.1038/275599a0. [2] Dragert G, Wang K L, James T S. A silent slip event on the deeper Cascadia subduction interface[J]. Science, 2001, 292(5521): 1525-1528. DOI: 10.1126/science.1060152. [3] Ide S, Beroza G C, Shelly D R, et al. A scaling law for slow earthquakes[J]. Nature, 2007, 447(7140): 76-79. DOI: 10.1038/nature05780. [4] Kawasaki I, Asai Y, Tamura Y, et al. The 1992 sanriku-oki, Japan, ultra-slow earthquake[J]. Journal of Physics of the Earth, 1995, 43(2): 105-116. DOI: 10.4294/jpe1952.43.105. [5] Miller M M, Melbourne T, Johnson D J, et al. Periodic slow earthquakes from the Cascadia subduction zone[J]. Science, 2002, 295(5564): 2423. DOI: 10.1126/science.1071193. [6] Nishikawa T, Ide S, Nishimura T. A review on slow earthquakes in the Japan Trench[J]. Progress in Earth and Planetary Science, 2023, 10(1): 1. DOI: 10.1186/s40645-022-00528-w. [7] Shelly D R, Beroza G C, Ide S. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature, 2007, 446(7133): 305-307. DOI: 10.1038/nature05666. [8] Ide S. A Brownian walk model for slow earthquakes[J]. Geophysical Research Letters, 2008, 35(17). DOI: 10.1029/2008gl034821. [9] Ide S, Imanishi K, Yoshida Y, et al. Bridging the gap between seismically and geodetically detected slow earthquakes[J]. Geophysical Research Letters, 2008, 35(10). DOI: 10.1029/2008gl034014. [10] Thomas A M, Beroza G C, Shelly D R. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault[J]. Geophysical Research Letters, 2016, 43(4): 1464-1471. DOI: 10.1002/2015gl067173. [11] Wei X T, Xu J K, Liu Y X, et al. The slow self-arresting nature of low-frequency earthquakes[J]. Nature Communications, 2021, 12(1): 5464. DOI: 10.1038/s41467-021-25823-w. [12] Kirkpatrick J D, Fagereng Å, Shelly D R. Geological constraints on the mechanisms of slow earthquakes[J]. Nature Reviews Earth & Environment, 2021, 2(4): 285-301. DOI: 10.1038/s43017-021-00148-w. [13] Beroza G C, Ide S. Slow earthquakes and nonvolcanic tremor[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 271-296. DOI: 10.1146/annurev-earth-040809-152531. [14] Gao X, Wang K L. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 2017, 543(7645): 416-419. DOI: 10.1038/nature21389. [15] Wang K L, Tréhu A M. Some outstanding issues in the study of great megathrust earthquakes: the Cascadia example[J]. Journal of Geodynamics, 2016, 98: 1-18. DOI: 10.1016/j.jog.2016.03.010. [16] Shelly D R, Beroza G C, Ide S, et al. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip[J]. Nature, 2006, 442(7099): 188-191. DOI: 10.1038/nature04931. [17] Obara K. Inhomogeneous distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate[J]. Gondwana Research, 2009, 16(3/4): 512-526. DOI: 10.1016/j.gr.2009.04.011. [18] Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events[J]. Geophysical Journal International, 2010, 180(1): 34-48. DOI: 10.1111/j.1365-246X.2009.04401.x. [19] Shelly D R, Hardebeck J L. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault[J]. Geophysical Research Letters, 2010, 37(14). DOI: 10.1029/2010gl043672. [20] Kodaira S, Iidaka T, Kato A, et al. High pore fluid pressure may cause silent slip in the Nankai Trough[J]. Science, 2004, 304(5675): 1295-1298. DOI: 10.1126/science.1096535. [21] 张龙, 江在森, 武艳强. 速度-状态摩擦本构定律及其在地震断层中的应用研究进展[J]. 地球物理学进展, 2013, 28(5): 2352-2362. DOI: 10.6038/pg20130517. [22] 杨又陵, 赵根模, 高国英, 等. 2001年11月14日昆仑山口西M 8.1地震前的缓慢地震事件[J]. 国际地震动态, 2003(9): 1-4. DOI: 10.3969/j.issn.0253-4975.2003.09.001. [23] Scholz C H. The brittle-plastic transition and the depth of seismic faulting[J]. Geologische Rundschau, 1988, 77(1): 319-328. DOI: 10.1007/BF01848693. [24] Leeman J R, Saffer D M, Scuderi M M, et al. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes[J]. Nature Communications, 2016, 7: 11104. DOI: 10.1038/ncomms11104. [25] Ikari M J, Marone C, Saffer D M, et al. Slip weakening as a mechanism for slow earthquakes[J]. Nature Geoscience, 2013, 6: 468-472. DOI: 10.1038/ngeo1818. [26] Okazaki K, Katayama I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes[J]. Geophysical Research Letters, 2015, 42(4): 1099-1104. DOI: 10.1002/2014gl062735. [27] Ikari M J, Kopf A J. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates[J]. Science Advances, 2017, 3(11): e1701269. DOI: 10.1126/sciadv.1701269. [28] 刘世民, 张雷, 何昌荣. 高压流体条件下叶蛇纹石摩擦特性及其对俯冲带慢滑移事件的启示[J]. 地球物理学报, 2023, 66(4): 1334-1347. DOI: 10.6038/cjg2022Q0290. [29] 姜辉. 俯冲带断层粘滑运动机制数值模拟研究: 以日本俯冲带为例[D]. 北京: 中国地震局地质研究所, 2012. [30] Li D, Liu Y J. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 3138-3157. DOI: 10.1002/2016jb013778. [31] Li H T, Wei M, Li D, et al. Segmentation of slow slip events in south central Alaska possibly controlled by a subducted oceanic plateau[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 418-436. DOI: 10.1002/2017jb014911. [32] 苟涛. 俯冲带深部结构、变形与孕震环境研究[D]. 南京: 南京大学, 2020. [33] 魏雪婷. 震源动力学破裂相图与慢地震理论模型研究[D]. 合肥: 中国科学技术大学, 2022. [34] 李昊天, 周仕勇. 断层几何形态对阿拉斯加中南部俯冲带慢滑移特征的影响[J]. 地震学报, 2019, 41(6): 681-694. DOI: 10.11939/jass.20190102. [35] Frenkel J, Kontorova T. On the theory of plastic deformation and twinning[J]. Journal of Physics-USSR, 1939, 1: 137-149. DOI: 10.1104/pp.105.060269. [36] Gershenzon N I, Bambakidis G, Hauser E, et al. Episodic tremors and slip in Cascadia in the framework of the Frenkel-Kontorova model[J]. Geophysical Research Letters, 2011, 38(1): L01309. DOI: 10.1029/2010gl045225. [37] Seidel C A M, Kühnemuth R. Molecules under pressure[J]. Nature Nanotechnology, 2014, 9: 164-165. DOI: 10.1038/nnano.2014.46. [38] 侯泉林. 高等构造地质学:第4卷 知识综合与运用[M]. 北京: 科学出版社, 2021. [39] Akbulatov S, Tian Y C, Boulatov R. Force-reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer[J]. Journal of the American Chemical Society, 2012, 134(18): 7620-7623. DOI: 10.1021/ja301928d. [40] Beyer M K, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds[J]. Chemical Reviews, 2005, 105(8): 2921-2948. DOI: 10.1021/cr030697h. [41] Brantley J N, Wiggins K M, Bielawski C W. Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions[J]. Science, 2011, 333(6049): 1606-1609. DOI: 10.1126/science.1207934. [42] Craig S L. Mechanochemistry: a tour of force[J]. Nature, 2012, 487(7406): 176-177. DOI: 10.1038/487176a. [43] Davis D A, Hamilton A, Yang J L, et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials[J]. Nature, 2009, 459: 68-72. DOI: 10.1038/nature07970. [44] Duwez A S, Cuenot S, Jérôme C, et al. Mechanochemistry: targeted delivery of single molecules[J]. Nature Nanotechnology, 2006, 1(2): 122-125. DOI: 10.1038/nnano.2006.92. [45] Haseen S, Kroll P. Paving the way for cristobalite TiO2 and GeO2 attainable under moderate tensile stress: a DFT study of transformation paths and activation barriers in cristobalite-rutile transformations of MO2 (M=Si, Ge, Ti)[J]. Computational Materials Science, 2019, 170: 109170. DOI: 10.1016/j.commatsci.2019.109170. [46] Hickenboth C R, Moore J S, White S R, et al. Biasing reaction pathways with mechanical force[J]. Nature, 2007, 446(7134): 423-427. DOI: 10.1038/nature05681. [47] Krishnan B P, Sureshan K M. A spontaneous single-crystal-to-single-crystal polymorphic transition involving major packing changes[J]. Journal of the American Chemical Society, 2015, 137(4): 1692-1696. DOI: 10.1021/ja512697g. [48] Wang J P, Kouznetsova T B, Craig S L. Reactivity and mechanism of a mechanically activated anti-woodward-hoffmann-DePuy Reaction[J]. Journal of the American Chemical Society, 2015, 137(36): 11554-11557. DOI: 10.1021/jacs.5b06168. [49] Panda M K, Runčevski T, Husain A, et al. Perpetually self-propelling chiral single crystals[J]. Journal of the American Chemical Society, 2015, 137(5): 1895-1902. DOI: 10.1021/ja5111927. [50] 王自强,段祝平. 塑性细观力学[M]. 北京:科学出版社,1995. [51] 徐秉业, 刘信声. 应用弹塑性力学[M]. 北京: 清华大学出版社, 1995. [52] 华彤文,王颖霞,卞江,等. 普通化学原理[M]. 4版. 北京:北京大学出版社,2013. [53] Cheng N N, Pan J N, Shi M Y, et al. Using Raman spectroscopy to evaluate coal maturity: the problem[J]. Fuel, 2022, 312: 122811. DOI: 10.1016/j.fuel.2021.122811. [54] Han Y Z, Xu R T, Hou Q L, et al. Deformation mechanisms and macromolecular structure response of anthracite under different stress[J]. Energy & Fuels, 2016, 30(2): 975-983. DOI: 10.1021/acs.energyfuels.5b02837. [55] Han Y Z, Wang J, Dong Y J, et al. The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure[J]. Fuel, 2017, 206: 1-9. DOI: 10.1016/j.fuel.2017.05.085. [56] Hou Q L, Han Y Z, Wang J, et al. The impacts of stress on the chemical structure of coals: a mini-review based on the recent development of mechanochemistry[J]. Science Bulletin, 2017, 62(13): 965-970. DOI: 10.1016/j.scib.2017.06.004. [57] Wang J, Han Y Z, Chen B Z, et al. Mechanisms of methane generation from anthracite at low temperatures: insights from quantum chemistry calculations[J]. International Journal of Hydrogen Energy, 2017, 42(30): 18922-18929. DOI: 10.1016/j.ijhydene.2017.06.090. [58] Wang J, Guo G J, Han Y Z, et al. Mechanolysis mechanisms of the fused aromatic rings of anthracite coal under shear stress[J]. Fuel, 2019, 253: 1247-1255. DOI: 10.1016/j.fuel.2019.05.117. [59] Wang J, Hou Q L, Zeng F G, et al. Stress sensitivity for the occurrence of coalbed gas outbursts: a reactive force field molecular dynamics study[J]. Energy & Fuels, 2021, 35(7): 5801-5807. DOI: 10.1021/ACS.ENERGYFUELS.0C04201. [60] 徐容婷, 李会军, 侯泉林, 等. 不同变形机制对无烟煤化学结构的影响[J]. 中国科学: 地球科学, 2015, 45(1): 34-42. DOI: 10.1007/s11430-014-4998-x. [61] Xu R T, Li H J, Guo C C, et al. The mechanisms of gas generation during coal deformation: preliminary observations[J]. Fuel, 2014, 117: 326-330. DOI: 10.1016/j.fuel.2013.09.035. [62] Yang G, Li L H, Lee W B, et al. Structure of graphene and its disorders: a review[J]. Science and Technology of Advanced Materials, 2018, 19(1): 613-648. DOI: 10.1080/14686996.2018.1494493. [63] He C R, Zhang L, Liu P X, et al. Characterizing the final stage of simulated earthquake nucleation governed by rate-and-state fault friction[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(5): e2023JB026422. DOI: 10.1029/2023JB026422. [64] 高玲举, 张健, 吴时国. 马里亚纳海沟Challenger Deep的岩石圈流变结构与动力学分析[J]. 中国科学院大学学报, 2017, 34(3): 380-388. DOI: 10.7523/j.issn.2095-6134.2017.03.012. [65] 刘俊来. 大陆中部地壳应变局部化与应变弱化[J]. 岩石学报, 2017, 33(6): 1653-1666. [66] Ruina A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B12): 10359-10370. DOI: 10.1029/jb088ib12p10359. [67] Shibazaki B, Obara K, Matsuzawa T, et al. Modeling of slow slip events along the deep subduction zone in the Kii Peninsula and Tokai regions, southwest Japan[J]. Journal of Geophysical Research (Solid Earth), 2012, 117(B6): B06311. DOI: 10.1029/2011JB009083. [68] 张雷. 龙门山断裂带断层岩在水热条件下的摩擦滑动特性实验研究[D]. 北京: 中国地震局地质研究所, 2013. [69] 刘旭耀, 胡才博, 石耀霖. 基于实验数据的岩石变形过程中温度场演化的数值模拟[J]. 中国科学院大学学报, 2015, 32(5): 644-651. DOI: 10.7523/j.issn.2095-6134.2015.05.010. [70] 魏炜, 余新刚. 锂对铁素体拉伸力学行为影响的分子动力学研究[J]. 中国科学院大学学报, 2022, 39(1): 13-20. DOI: 10.7523/j.ucas.2020.0024. [71] 夏骏. 氧化石墨烯层状材料界面交联的力化学机理研究[D]. 合肥: 中国科学技术大学, 2020. [72] 方武章, 张礼川, 闫清波, 等. 应变对硒化锡和硫化锡拉胀材料力学性质和能带结构的调控[J]. 中国科学院大学学报, 2017, 34(1): 8-14. DOI: 10.7523/j.issn.2095-6134.2017.01.002. [73] 刘松畅, 余新刚. 单晶钨辐照损伤的分子动力学研究[J]. 中国科学院大学学报, 2024, 41(4): 452-460. DOI: 10.7523/j.ucas.2022.087. [74] 吴伟, 余新刚. Ar原子与石墨片层相互作用的分子动力学研究[J/OL]. 中国科学院大学学报, 2023. (2023-07-13)[2024-03-20]. DOI: 10.7523/j.ucas.2023.064. |