[1] Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant [J]. The Astronomical Journal, 1998, 116(3): 1009-1038. DOI:10.1086/300499. [2] Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae [J]. The Astrophysical Journal, 1999, 517 (2): 565-586. DOI:10.1086/307221. [3] Suzuki N, Rubin D, Lidman C, et al. The Hubble space telescope cluster supernova survey. v. improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample [J]. The Astrophysical Journal, 2012, 746(1): 85. DOI:10. 1088/0004-637x/746/1/85. [4] Hinshaw G, Larson D, Komatsu E, et al. Nine-year wilkinson microwave anisotropy probe (wmap) observations: cosmological parameter results [J]. The Astrophysical Journal Supplement Series, 2013, 208(2): 19. DOI:10.1088/0067-0049/208/2/19. [5] Aghanim N, Akrami Y, Ashdown M, et al. Planck 2018 results VI. Cosmological parameters [J]. Astronomy & Astrophysics, 2020, 641: A6. DOI:10.1051/0004-6361/201833910. [6] Alam S, Aubert M, Avila S, et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory [J]. Physical Review D, 2021, 103(8): 083533. DOI:10.1103/PhysRevD.103.083533. [7] Yang X H, Chu Y Q. Populating galaxies in dark matter halos [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2008, 25(5): 712-720. DOI:10.7523/j.issn.2095-6134.2008.5.022. [8] Copeland E J, Sami M, Tsujikawa S. Dynamics of dark energy [J]. International Journal of Modern Physics D, 2006, 15(11): 1753-1935. DOI: 10.1142/ s021827180 600942x. [9] Zlatev I, Wang L M, Steinhardt P J. Quintessence, cosmic coincidence, and the cosmological constant [J]. Physical Review Letters, 1999, 82(5): 896-899. DOI:10.1103/PhysRevLett.82.896. [10] Singh P, Sami M, Dadhich N. Cosmological dynamics of a phantom field [J]. Physical Review D, 2003, 68(2): 023522. DOI: 10.1103/PhysRevD.68. 023522. [11] Zhang Y. Origin of the negative pressure for relativistic boson condensate [J]. Chinese Physics Letters, 2000, 17(1): 76-78. DOI:10.1088/0256-307x/ 17/1/026. [12] Zheng J, Cao S, Lian Y J, et al. Revisiting Chaplygin gas cosmologies with the recent observations of high-redshift quasars [J]. The European Physical Journal C, 2022, 82(7): 582. DOI:10.1140/epjc/s10052-022-10517-4. [13] Zhang Y, Xia T Y, Zhao W. Yang-Mills condensate dark energy coupled with matter and radiation [J]. Classical and Quantum Gravity, 2007, 24(13): 3309-3337. DOI:10.1088/0264-9381/24/13/011. [14] Xia T Y, Zhang Y. 2-loop quantum Yang-Mills condensate as dark energy [J]. Physics Letters B, 2007, 656(1/2/3): 19-24. DOI:10.1016/j.physletb.2007.09. 046. [15] Wang S, Zhang Y, Xia T Y. The three-loop Yang-Mills condensate dark energy model and its cosmological constraints [J]. Journal of Cosmology and Astroparticle Physics, 2008, 2008(10): 37. DOI:10. 1088/1475-7516/2008/10/037. [16] Wang S, Zhang Y. Alleviation of cosmic age problem in interacting dark energy model [J]. Physics Letters B, 2008, 669(3/4): 201-205.DOI:10.1016/j. physletb. 2008.09.055. [17] Zhao W. Attractor solution in coupled Yang-Mills field dark energy models [J]. International Journal of Modern Physics D, 2009, 18(9): 1331-1342. DOI:10. 1142/s0218271809014947. [18] Donà P, Marcianò A, Zhang Y, et al. Yang-Mills condensate as dark energy: a nonperturbative approach [J]. Physical Review D, 2016, 93(4): 043012. DOI:10.1103/PhysRevD.93.043012. [19] 潘宇, 李力, 曹硕, 等. H(z)数据对相互作用暗能量模型的观测研究[J].天文学报, 2015, 56(4): 317-325. DOI:10.15940/j.cnki.0001-5245.2015.04.001. [20] Zhang Y. Strong energy condition of simple gauge field system [J]. Chinese Physics Letters, 1998,15(8): 622-624. DOI: 10.1088/0256-307x/15/8/029. [21] Parker L, Zhang Y. Ultrarelativistic Bose-Einstein condensation in the Einstein universe and energy conditions [J]. Physical Review D, Particles and Fields, 1991, 44(8): 2421-2431. DOI:10.1103/PhysRevD.44. 2421. [22] Parker L, Zhang Y. Relativistic condensate as a source for inflation [J]. Physical Review D, 1993, 47(2): 416-420. DOI:10.1103/PhysRevD.47.416. [23] Parker L, Zhang Y. Cosmological perturbations of a relativistic condensate [J]. Physical Review D, Particles and Fields, 1995, 51(6): 2703-2712. DOI:10. 1103/PhysRevD.51.2703. [24] Walecka J D. The relativistic neclear many-body poblem[M]//New Vistas in Nuclear Dynamics. Boston, MA: Springer US, 1986: 229-271. DOI: 10. 1007/978-1-4684-5179-5_8. [25] Fetter A L, Walecka J D. Quantum theroy of many particle systems[M]. New York: McGraw-Hill Press, 1971: 33-289. [26] Haber H E, Weldon H A. Finite-temperature symmetry breaking as Bose-Einstein condensation [J]. Physical ReviewD, 1982, 25(2): 502-525. DOI:10.1103/ PhysRevD.25.502. [27] Kapusta J I. Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories [J]. Physical Review D, 1981, 24(2): 426-439. DOI:10.1103/ PhysRevD. 24. 426. [28] Kapusta J I, Gale C. Finite-temperature field theory: principles and applications[M]. 2nd ed. Cambridge, uk: Cambridge University Press, 2006. [29] Dodelson S, Widrow L M. Baryogenesis in a baryon-symmetric universe [J]. Physical Review D, Particles and Fields, 1990, 42(2): 326-342. DOI:10.1103/ PhysRevD.42.326. [30] Bernstein J, Dodelson S. Relativistic Bose gas [J]. Physical Review Letters, 1991, 66(6): 683-686. DOI:10.1103/PhysRevLett.66.683. [31] Walecka J D. A theory of highly condensed matter [J]. Annals of Physics, 1974, 83(2): 491-529. DOI: 10. 1016/0003-4916(74)90208-5. [32] Linde A D. High-density and high-temperature symmetry behavior in gauge theories [J]. Physical Review D, 1976, 14(12): 3345-3349. DOI:10.1103/ PhysRevD.14.3345. [33] Linde A D. Classical Yang-Mills solutions, condensation of W mesons and symmetry of composition of superdense matter[J]. Physics Letters B, 1979, 86(1): 39-42. DOI:10.1016/0370-2693(79) 90616-6. [34] Linde A D. Phase transitions in gauge theories and cosmology [J]. Reports on Progress in Physics, 1979, 42(3): 389-437. DOI:10.1088/0034-4885/42/3/001. [35] Zhang Y. Energy conditions of charged boson condensate and degenerate fermions [J]. Communications in Theoretical Physics, 1998, 30(4): 603-608. DOI: 10.1088/0253-6102/30/4/603. [36] Reid M J, Pesce D W, Riess A G. An improveddistance to NGC 4258 and its implications for the Hubble constant [J]. The Astrophysical Journal Letters, 2019, 886(2): L27. DOI:10. 3847/2041-8213/ab552d. [37] Pesce D W, Braatz J A, Reid M J, et al. The megamaser cosmology project. XIII. combined Hubble constant constraints [J]. The Astrophysical Journal Letters, 2020, 891(1): L1. DOI:10.3847/2041-8213/ab75f0. [38] Wong K C, Suyu S H, Chen G C F, et al. H0LiCOW-XIII. A 2.4 per cent measurement of H0 from lensed quasars:5.3σ tension between early-and late-Universe probes [J]. Monthly Notices of the Royal Astronomical Society, 2020, 498(1): 1420-1439. DOI: 10.1093/mnras/stz3094. [39] Fu Z W, Zhang Y, Tong M L. Observational constraints on a Yang-Mills condensate dark energy model [J]. Classical and Quantum Gravity, 2011, 28(22):225017. DOI:10.1088/0264-9381/28/22/225017. [40] Lian Y J, Cao S, Biesiada M, et al. Probing modified gravity theories with multiple measurements of high-redshift quasars [J]. Monthly Notices ofthe Royal Astronomical Society, 2021, 505(2): 2111-2123. DOI: 10.1093/mnras/stab1373. [41] Scolnic D M, Jones D O, Rest A, et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample [J]. The Astrophysical Journal, 2018, 859(2): 101. DOI: 10.3847/1538-4357/aab9bb. [42] Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies [J]. The Astrophysical Journal, 2005, 633(2): 560-574. DOI:10.1086/466512. [43] Alam S, Ata M, Bailey S, et al. The clustering of galaxies in the completed SDSS-Ⅲ Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample [J]. Monthly Notices of the Royal Astronomical Society, 2017, 470(3): 2617-2652. DOI: 10.1093/mnras/stx721. [44] Ata M, Baumgarten F, Bautista J, et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 [J]. Monthly Notices of the Royal Astronomical Society, 2018, 473(4): 4773-4794. DOI: 10.1093/mnras/stx2630. [45] De Sainte Agathe V, Balland C, du Mas des Bourboux H, et al. Baryon acoustic oscillations at z=2.34 from the correlations of Lyα absorption in eBOSS DR14 [J]. Astronomy & Astrophysics, 2019, 629: A85. DOI: 10. 1051/0004-6361/20193 5638. |