[1] Pan G F, Ye J, An J P, et al.Latency versus reliability in LEO mega-constellations: Terrestrial, aerial, or space relay?[J]. IEEE Transactions on Mobile Computing, 2023, 22(9): 5330-5345. DOI: 10.1109/TMC.2022.3168081. [2] Zhao X Y, Wang C, Cai S S, et al.Cooperative design of dual-layer LEO satellite constellation based on diversified QoS requirements and seamless multi-coverage[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 925-939. DOI: 10.1109/TVT.2024.3456791. [3] Baltaci A, Shortt K.Investigation of the influence of LEO constellation dynamics on optical inter-satellite links[C]//2023 IEEE International Conference on Space Optical Systems and Applications (ICSOS). October 11-13, 2023, Vancouver, BC, Canada. IEEE, 2023: 121-127. DOI: 10.1109/ICSOS59710.2023.10490286. [4] Kang Y H, Zhu Y F, Wang D, et al.Efficient path selection design for large scale LEO satellite constellations using graph embedding-based reinforcement learning[J]. IEEE Transactions on Network Science and Engineering, 2025, 12(3): 2007-2020. DOI: 10.1109/TNSE.2025.3543161. [5] Hou L M, Kang S L, Sun S H, et al.A load balancing routing method based on real time traffic in LEO satellite constellation space networks[C]//2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring). June 19-22, 2022, Helsinki, Finland. IEEE, 2022: 1-5. DOI: 10.1109/VTC2022-Spring54318.2022.9860540. [6] Guo J M, Yang L, Rincón D, et al.Static placement and dynamic assignment of SDN controllers in LEO satellite networks[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4975-4988. DOI: 10.1109/TNSM.2022.3184989. [7] Hsu Y H, Lee J N, Xu F M.A deep reinforcement learning based routing scheme for LEO satellite networks in 6G[C]//2023 IEEE Wireless Communications and Networking Conference (WCNC). March 26-29, 2023, Glasgow, United Kingdom. IEEE, 2023: 1-6. DOI: 10.1109/WCNC55385.2023.10118680. [8] 吴云华, 初思仪, 李宗凌, 等. 弱全局信息下巨星座多路并发熵均衡路由策略[J]. 宇航学报, 2024, 45(7): 1089-1099. DOI: 10.3873/j.issn.1000-1328.2024.07.010. [9] 周雅, 谢卓辰, 刘沛龙, 等. 基于区域分流的低轨卫星星座星间负载均衡路由算法[J]. 中国科学院大学学报, 2021, 38(5): 687-695. DOI: 10.7523/j.issn.2095-6134.2021.05.013. [10] 龚宇鹏, 张世杰. 偶数重连续覆盖的Walker星座设计方法[J]. 宇航学报, 2022, 43(9): 1163-1175. DOI: 10.3873/j.issn.1000-1328.2022.09.004. [11] 李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程, 2023, 52(3):125-139. DOI:10.3788/IRLA20220393. [12] 王宁远, 刘亮, 陈东, 等. 低轨巨星座多品类业务流低复杂度分段路由方法[J]. 电子学报, 2021, 49(11): 2124-2132. DOI: 10.12263/DZXB.20201335. [13] 徐小涛, 赵国锋, 韩珍珍, 等. 面向6G通信的多层低轨卫星网络路由算法[J]. 移动通信, 2024, 48(1): 56-64, 87. DOI: 10.3969/j.issn.1006-1010.20230103-0003. [14] 李文屏, 白鹤峰, 赵毅, 等. 一种中高轨混合的多层卫星骨干网络架构设计[J]. 电子与信息学报, 2023, 45(2): 472-479. DOI: 10.11999/JEIT211198. [15] 徐晓帆, 章跃跃, 曹馨悦, 等. 面向多层多域巨型星座的卫星网络拓扑控制[J]. 通信学报, 2024, 45(7): 1-9. DOI: 10.11959/j.issn.1000-436x.2024136. [16] 杨明川, 薛冠昌, 李清毅. 基于邻居卫星负载状态的低轨卫星分布式路由算法[J]. 通信学报, 2021, 42(8): 43-51. DOI: 10.11959/j.issn.1000-436x.2021165. [17] 杨惠婷, 刘伟. 空间信息网络时变图建模方法[J]. 移动通信, 2024, 48(1): 13-18, 39. DOI: 10.3969/j.issn.1006-1010.20231130-0002. [18] 帅家成, 刘雨, 望育梅. 卫星网络中基于时变图的节能资源分配策略[J]. 移动通信, 2021, 45(5): 15-21. DOI: 10.3969/j.issn.1006-1010.2021.05.003. [19] 刘晓露, 高旺, 韦梦立, 等. 时变有向图下分布式约束联邦优化算法[J]. 东南大学学报(自然科学版), 2025, 55(4): 1189-1196. DOI:10.3969/j.issn.1001-0505.2025.04.027. [20] 杨小平, 张华强, 张学敏, 等. 基于OPNET的闭环供应链网络拥塞控制算法[J]. 电子设计工程, 2025, 33(8): 169-173. DOI: 10.14022/j.issn1674-6236.2025.08.035. [21] 王则予, 张梦菲, 孙耀华, 等. 星上透明转发非地面网络中的切换机制[J]. 北京邮电大学学报, 2022, 45(6): 101-108. DOI: 10.13190/j.jbupt.2022-144. [22] 潘成胜, 陆煌杰, 石怀峰, 等. 基于网络状态图模型的分簇式路由收敛方法[J]. 通信学报, 2024, 45(12): 95-110. DOI: 10.11959/j.issn.1000-436x.2024267. [23] 闵晓飞, 李靖, 张朝辉. SDN驱动的网络流量负载均衡路由优化算法[J]. 系统工程与电子技术, 2023, 45(8): 2578-2587. DOI: 10.12305/j.issn.1001-506X.2023.08.33. |