欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2015, Vol. 32 ›› Issue (3): 391-397.DOI: 10.7523/j.issn.2095-6134.2015.03.015

• 计算机科学 • 上一篇    下一篇

基于CBF-SS策略的大流识别算法

赵小欢1, 李明辉2   

  1. 1. 中国人民解放军95034部队, 广西 百色 533616;
    2. 空军后勤部, 北京 100720
  • 收稿日期:2014-03-31 修回日期:2014-07-22 发布日期:2015-05-15
  • 通讯作者: 赵小欢
  • 基金资助:

    国家自然科学基金(61201209)和陕西省自然科学基金重点项目(2012JZ8005)资助

Large flow identification based on counting Bloom filter and space saving

ZHAO Xiaohuan1, LI Minghui2   

  1. 1. 95034 Unit of PLA, Baise 533616, Guangxi, China;
    2. Air Force Logistics Department, Beijing 100720, China
  • Received:2014-03-31 Revised:2014-07-22 Published:2015-05-15

摘要:

在分析大流识别算法中的散列方法和计数方法的优缺点的基础上,针对网络流的重尾分布特性,提出一种能够有效结合散列方法和计数方法优点的大流识别算法CBF-SS(counting Bloom filter & space saving).该算法首先采用改进的计数型布鲁姆过滤器(counting Bloom filter,CBF)过滤掉大部分的小流,然后通过SS(space saving)计数算法识别出网络中的大流.理论分析和实验结果表明,CBF-SS算法具有较低的时间复杂度和空间复杂度,在大流识别效果上远优于SS等算法.

关键词: 网络流, 大流, 计数型布鲁姆过滤器, space saving算法

Abstract:

Aiming at the characteristics of the heavy-tailed distribution of network flows, we propose a large flow identification algorithm, CBF-SS(counting Bloom filter and space saving), on the basis of analyzing advantages and deficiencies of hashing and counting methods used for large flow identification. It has the capability of combining the advantages of hashing and counting methods efficiently. The algorithm CBF-SS uses the counting Bloom filter to filter mass of small flows at first. Then, CBF-SS uses the SS (space saving) counting method to our large flows. Both theoretical and experimental results show that CBF-SS is very space-saving and time-efficient and it performs much better than the SS algorithm in the precision of large flow identification.

Key words: network flows, large flows, counting Bloom filter, space saving

中图分类号: