欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2016, Vol. 33 ›› Issue (1): 128-134.DOI: 10.7523/j.issn.2095-6134.2016.01.019

• 信息与电子科学 • 上一篇    下一篇

基于SUSAN算子和角点判别因子的目标边缘检测

吴一全1,2,3,4, 王凯1   

  1. 1. 南京航空航天大学电子信息工程学院, 南京 210016;
    2. 西华大学制造与自动化省高校重点实验室, 成都 610039;
    3. 深圳大学 深圳市城市轨道交通重点实验室, 广东 深圳 518060;
    4. 南京财经大学江苏省粮油品质控制及深加工技术重点实验室, 南京 210046
  • 收稿日期:2014-10-27 修回日期:2015-06-10 发布日期:2016-01-15
  • 通讯作者: 吴一全
  • 基金资助:

    国家自然科学基金 (60872065)、制造与自动化省高校重点实验室开放课题(2014)、高速铁路线路工程教育部重点实验室开放基金(2014-HRE-01)、江苏省粮油品质控制及深加工技术重点实验室开放基金 (LYPK201304)和江苏高校优势学科建设工程项目(2012)资助

Target edge detection based on SUSAN operator and corner discriminant factor

WU Yiquan1,2,3,4, WANG Kai1   

  1. 1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Provincial Key Laboratory of Manufacturing and Automation, Chengdu 610039, China;
    3. Shenzhen Key Laboratory of Urban Rail Traffic, Shenzhen 518060, Guangdong, China;
    4. Jiangsu Key Laboratory of Quality Control and Further Processing of Cereals and Oils, Nanjing University of Finance Economics, Nanjing 210046, China
  • Received:2014-10-27 Revised:2015-06-10 Published:2016-01-15

摘要:

针对目标区域角点分布密集和背景区域相对稀疏的图像,为了更准确、完整地提取目标区域的边缘,消除背景,提出一种基于SUSAN算子和角点判别因子的目标边缘检测方法.实验结果表明,与Canny方法、改进的非下采样Contourlet模极大值方法和改进的蜂群方法等边缘检测方法相比,本文提出的方法能有效避免背景区域的干扰,精确定位目标区域,所得边缘轮廓连通完整、细节丰富.该方法具有较优的主观视觉效果和较强的抗噪能力,且运行时间较少.

关键词: 目标边缘检测, 角点, SUSAN算子, 目标角点判别因子, 效益度相近标准

Abstract:

This work aims at the images with intensive corners in the target area and sparse corners in the background area.To extract the edges of target area more accurately and more completely and to eliminate the background, a target edge detection method based on SUSAN operator and corner discriminant factor is proposed. First, the corners of image are extracted by SUSAN operator and the isolated noise points in the image are filtered. Then, target corner discriminant factor is defined for elimination of corners in the background area and preservation of corners in the target area. Finally, according to the similar standard of effectiveness, other edge points are detected based on the target corner standard and the target edges are obtained. A large number of experimental results show that, compared with Canny method, the improved bee colony method, and the improved non-subsampled contourlet modulus maxima method, the proposed method avoids the interference of background area effectively and locate the target area accurately. The obtained edge profile can be connected and is complete with abundant details. It has better subjective visual effect and stronger anti-noise ability with less running time.

Key words: target edge detection, corner, SUSAN operator, target corner discriminant factor, similar standard of effectiveness

中图分类号: