欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2016, Vol. 33 ›› Issue (5): 577-583.DOI: 10.7523/j.issn.2095-6134.2016.05.001

• 数学与物理学 •    下一篇

S2上一类HCMU度量的存在性

魏志强, 吴英毅, 国金宇   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2015-11-07 修回日期:2016-01-07 发布日期:2016-09-15
  • 通讯作者: 魏志强
  • 基金资助:

    国家自然科学基金(11471308)资助

Existence of a class HCMU metric on S2

WEI Zhiqiang, WU Yingyi, GUO Jinyu   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-11-07 Revised:2016-01-07 Published:2016-09-15

摘要:

HCMU度量是紧黎曼面上带奇点的extremal度量.研究它的存在性十分重要.通过研究Chen和Wu(Pacific J Math,2009,240(2):267-288)给出的S2上HCMU度量存在的充分必要条件,证明当S2上至少有(N-1)个鞍点时,一定存在non-CSC HCMU度量,其中N是所有锥奇点的个数.

关键词: 极值度量, 紧黎曼面, HCMU度量, 锥奇点

Abstract:

HCMU metric is an extremal Kähler metric with singularities on a compact Riemann surface. It is important to study the existence of HCMU metrics. Through studying the sufficient and necessary condition of Chen and Wu(Pacific J Math,2009,240(2):267-288) for the existence of HCMU metrics on S2, we show that there must exist a non-CSC HCMU metric on S2 which has N conical singularities and at least (N-1) saddle points.

Key words: extremal metric, compact Riemann surface, HCMU metric, conical singularity

中图分类号: