欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2017, Vol. 34 ›› Issue (1): 99-105.DOI: 10.7523/j.issn.2095-6134.2017.01.013

• 信息与电子科学 • 上一篇    下一篇

一种鲁棒的多尺度稀疏表示SAR目标识别方法

向卫力1,2, 李晓辉1, 周勇胜1, 李传荣1, 唐伶俐1   

  1. 1 中国科学院光电研究院中国科学院定量遥感信息技术重点实验室, 北京 100094;
    2 中国科学院大学, 北京 100049
  • 收稿日期:2016-04-22 修回日期:2016-05-11 发布日期:2017-01-15
  • 通讯作者: 周勇胜,E-mail:zhouys@aoe.ac.cn
  • 基金资助:

    国家自然科学基金(61331020,61571422)和国家863计划项目(2013AA122903,2013AA122904)资助

A robust SAR target recognition method based on multi-scale feature and sparse representation

XIANG Weili1,2, LI Xiaohui1, ZHOU Yongsheng1, LI Chuanrong1, TANG Lingli1   

  1. 1 Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China;
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-04-22 Revised:2016-05-11 Published:2017-01-15

摘要:

提出一种基于多尺度Gabor滤波特征提取和稀疏表示的SAR图像目标识别方法。首先,在目标分割的基础上,利用Gabor滤波器对SAR目标图像在不同方向上进行滤波,增强目标的局部特征;然后,根据稀疏表示模型,以训练样本特征为原子构建字典,利用稀疏求解算法选择最优的原子集合来表示测试样本特征,进而计算表示系数中非负值的l1范数来判别测试样本。实验结果验证了该算法的有效性与鲁棒性。

关键词: SAR, 目标识别, 稀疏表示, 多尺度

Abstract:

A robust synthetic aperture radar (SAR) target recognition method based on multi-scale Gabor feature extraction and sparse representation is proposed. Firstly, SAR images are segmented and filtered in different directions by using multi-scale Gabor filter to enhance the local features. Then, based on sparse representation model, the sparse dictionary is constructed by using the training samples as atoms. By using the sparse solving algorithms, the testing samples are represented by selecting the optimal atom set. Finally, the testing samples are recognized according to the l1 norm of non-negative sparse representation coefficient. Experimental results show the effectiveness and robustness of the proposed method.

Key words: SAR, target recognition, sparse representation, multi-scale

中图分类号: